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ABSTRACT 

 

 

Colloidal semiconductor nanocrystals are materials with intriguing properties that 

make them useful for a diverse array of applications such as photocatalysts, light-absorbing 

materials in solar cells, light emitting diodes and luminescent biological tags, to name only a 

few. Performance of nanomaterials in these applications is directly related to the size, shape 

and stoichiometry of the nanocrystals. Strategies exist to control these characteristics during 

colloidal synthesis, but they tend to rely on certain surfactants, additives, or multi-step 

procedures to achieve desirable properties. This thesis describes new directions in the 

synthesis of colloidal nanomaterials that use computational chemistry as a guide. Using new 

and efficient methods in density functional theory (DFT) to reliably calculate bond 

dissociation energies (BDEs) of organodichalcogenide (sulfide or selenide) precursors 

enables the rational synthesis of dot, rod and tetrapod morphology cadmium chalcogenide 

nanocrystals. Precursors with weaker C-E (E = S, Se) bonds and stronger E-E bonds yielded 

dot-shaped nanocrystals, while precursors with stronger C-E and weaker E-E bonds afforded 

rod or tetrapod shapes. This methodology readily extends to the BDE calculation of tertiary 

phosphine chalcogenides with substituted phenyl, alkyl, perfluoroalkyl moieties or Verkade-

type cage structures. In these systems the BDE of a series of P—S or P—Se bonds increases 

with slightly increasing bond distance, although the BDE of P—Se bonds is significantly 

lower than P—S bonds.  

Another promising method in colloidal nanocrystal synthesis is photochemical 

decomposition of precursors to access unusual phases or shapes. This thesis also describes 
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the photochemical synthesis of cobalt(III) oxyhydroxide, Co(O)OH, nanocrystals from 

chloropentaamminecobalt(III) salts in aqueous solution. Compared to the thermal 

decomposition of the starting material in the absence of light, the photochemically-

synthesized material exhibits a smaller size with a lower-temperature phase transition to 

cobalt(II,III) oxide, Co3O4.  
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CHAPTER 1 

GENERAL INTRODUCTION 

 Quantum dots are defined as small particles of a semiconducting material between 1-10 

nm in size.1 While the parent bulk materials are semiconductors, the electronic properties of 

quantum dots are distinct from particle sizes above the nanosize regime. At these larger sizes, the 

band gap of the semiconductor is independent of particle size. In the solid phase, semiconductor 

band theory describes the electronic structure as tightly overlapped molecular orbitals creating a 

continuum of allowed energy levels in the valence band, as well as forbidden energy levels with 

no electron density. The band gap is then the amount of energy required to promote an electron 

from the occupied valence band into the conduction band. As particles shrink below the Bohr 

exciton radius a phenomenon called quantum confinement governs the now size-dependent band 

gap. As the total number of molecular orbitals is reduced, discrete bands appear in the electronic 

structure, and the band gap widens. In general, smaller particles of the same stoichiometry 

exhibit wider band gaps. 

 The size, shape and composition of quantum dots all play a role in determining their 

optoelectronic properties.2 In lieu of an exhaustive list of all possible compositions and shapes, 

the focus here is on recent efforts to control these properties in II-VI semiconductors, especially 

in the cadmium chalcogenides. Within this class of materials, dot (spherical), rod and tetrapod 

morphologies are most common, shown in Figure 1.3 Colloidal synthesis methods that yield one 

morphology over another typically require a employing a mixture of surfactants or, especially in 

the case of tetrapods, use a two-step seeded growth procedure.4–6 Tuning the particle size 

requires understanding the conversion kinetics of the precursors, but a remaining challenge is 

linking the precursor reactivity to the final size.7 Adjusting the composition of the materials by 
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alloying two related materials in the same particle (e.g. CdS-CdSe) further tunes the resulting 

band gap.8–12  

 

Figure 1. Models of cadmium chalcogenide dot, rod and tetrapod morphology nanocrystals. The dot 

shape is constructed from zinc blende cadmium sulfide, the rod is wurtzite cadmium sulfide, and the 

tetrapod shape is a zinc blende core with wurtzite arms. 

The effective use of these nanomaterials in practical devices requires precisely tuning the 

particle size and shape, as these properties change the absorbance and photoluminescence 

wavelengths. A simple means of adjusting luminescence wavelength, which derives from the 

quantum confinement description of the electronic structure, is by tuning the size of the 

particles.13 At the smallest end of the quantum dot scale, so-called magic size clusters exhibit 

broad spectrum, white-colored luminescence.14 Aside from size, particle shape also plays a role 

in determining luminescence wavelength. This is most interesting in the case of tetrapod-shaped 

particles, which simultaneous emit light of two colors.15, 16 Particles with chiral ligands 

stabilizing the surface can emit circularly polarized light.17 The bright and tunable luminescence 

from quantum dots makes them an interesting material for light emitting diodes (LEDs).18, 19 As 

of the time of writing, some of the first quantum dot-containing display technologies are being 
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demonstrated at electronics shows and coming to market, though it remains to be seen if such 

displays supplant the current LCD mainstream.20 

 Quantum dot-based solar cell performance is also subject to the size and shape of the 

particles in the absorbing layer.21–23 The fact that quantum dots are produced and handled in 

solution makes them attractive for their ease of use in industrial processes. One advance in this 

direction for solar cells is the development of a quantum dot-infused paint which was applied to 

device backings.24 

The self-assembly of nanocrystals into larger arrays with unique properties also depends 

on particle size and shape – special attention must also be paid to the size dispersion of the 

nanocrystals.25 Apart from packed arrangements of spherical particles, assemblies of branched 

structures are also known.26, 27 The future of self-assembled materials may come in the form of 

layers of different nanocrystalline arrays.28  

Shape-controlled nanomaterials are also gaining notoriety as excellent photocatalysts for 

organic transformations29 and water splitting.30, 31 Such catalysts are often rod-shaped with noble 

metal particles selectively deposited on the ends. This type of selective deposition and 

accompanying electron transfer32 is an inherent advantage to rods compared to other nanocrystal 

shapes for catalytic applications. 

Controlling nanocrystalline morphology – from surfactants to molecular reactivity. 

Optimizing the performance of devices containing nanomaterials requires the use of particles 

with specific and well-defined sizes, shapes and compositions. A major challenge in bottom-up 

nanomaterial synthesis is precisely and predictably controlling these properties. An early 

example of controlled tetrapod synthesis relied n-octadecylphsphonic acid (ODPA) as a ligand 

which bound to the arms of the tetrapods during growth.33 The observation that ODPA stabilized 
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the wurtzite arms of the tetrapod structures was consistent with previous work that showed 

ODPA favoring the growth of wurtzite nanorods.34 Since the initial work on colloidal tetrapod 

synthesis, numerous additional methods have been reported.35–37 In all, possible mechanisms that 

produce branched structures include the aforementioned seeded growth as well as twinning, 

crystal splitting and oriented attachment.38 

Photochemical synthesis methods may also allow for the isolation of unusual shapes or 

metastable phases not found during thermolysis. The synthesis of gold nanoparticles by 

photolysis is known and can afford rod39 or spherical morphologies.40, 41 Such methods are 

intriguing avenues of research in the synthesis of semiconductor-metal heterostructures.42, 43 

Other materials synthesized in this manner include CeO2,
44 BiSe,45 Co(O)OH,46 manganese and 

cobalt oxides,47 and a variety of main group elements and compounds.48 

Alternatively, the kinetics of precursor conversion can influence the rate of nucleation 

and resulting shape of colloidal nanocrystals. Slow precursor conversion is associated with slow 

nucleation to yield nanorods, while fast precursor conversion leads to fast nucleation and affords 

quantum dots.49 When using phosphine chalcogenide precursors to synthesize cadmium 

chalcogenide nanocrystals, compounds with weak P—E bonds formed nanorods of shorter length 

than strong P—E bonds.50 In the synthesis of CuInSe2, organic diselenide precursors produced 

the metastable wurtzite phase of the material rather than the thermodynamically more stable 

chalcopyrite phase.51 Since these observations, investigations of precursor conversion kinetics 

and mechanistic insight into nanocrystal synthesis have become more numerous as the field 

matures.52, 53  

Screening precursors for nanocrystal synthesis. The aforementioned mechanistic work 

leads to a deeper fundamental question in the field of nanocrystal synthesis: Beyond 
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retrospectively understanding synthesis mechanisms, is it possible to predict the outcome of a 

nanocrystal synthesis before carrying it out in the laboratory? It appears that the earliest events in 

the approximate timeline of nanocrystal synthesis – the conversion of precursors to form reactive 

monomers and crystal nuclei – have considerable influence on the final outcome. Hammond’s 

postulate54 would infer that the transition state of the reaction would look more like the 

molecular precursors than the much larger nanocrystals, whose formation is eventually driven by 

nucleation theory and lattice enthalpy.55  

When using organochalcogen molecules to synthesize nanomaterials, essentially all 

bonds to the sulfur or selenium must be broken to give metal-chalcogen nuclei. A possible way 

to predict the ease of this event and the rate of nanocrystal nucleation and growth is to consider 

the bond dissociation energies (BDEs or bond enthalpies) of the molecular precursors. As 

chemists intuitively understand this concept, it makes a simple starting point for gaining insight 

into precursor conversion. 

Bond dissociation enthalpy (BDE) is defined as the enthalpy change in the process of 

homolytically breaking a covalent bond, shown in Figure 2. The importance of these values is 

central to all chemical processes that involve making and breaking bonds, although determining 

BDEs is not straightforward.56 Typical experimental measurement methods include calorimetry, 

spectroscopy, chemical equilibrium, chemical kinetics, and mass spectrometry.57 Values for 

bonds in many compounds are tabulated in reference books.58 If no entry is available for a 

desired molecule, Benson group additivity methods are a convenient way to estimate a BDE.59 

These methods estimate the enthalpy of formation of a molecule by adding together enthalpies of 

formation of its constituent functional groups. This strategy has been successful for a wide 

variety of organic molecules including aliphatic and aromatic hydrocarbons, compounds of 
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heteroatoms and free radicals.60 BDEs are tabulated and measured for gas phase molecules – 

values in solution are different from gas phase due to solvation effects on the reaction.61 

 

Figure 2. Examples of bond hemolysis reactions in (a) organodichalcogenide and (b) organophosphine 

chalcogenide. 

Experimental measurements have not kept pace with the growing number of described 

compounds in the literature. Chemists have since begun turning to computational methods to 

quickly and accurately assess bond strengths. For calculations of thermodynamic properties 

starting from quantum mechanics, Gaussian-2 and the more modern Gaussian-3 (G2 and G3, 

respectively) theory are quite possibly the most accurate among all quantum mechanical 

methods. G2 is a composite method that uses large (6-311G(d,p)) basis sets and treats electron 

correlation with Moller-Plesset (MP) perturbation theory and quadratic configuration 

interaction.62 This high level of theory grants accuracy over other methods, but comes with the 

penalty of requiring longer computation time and greater computer resources. More commonly 

applied is density functional theory (DFT), which computes electron density around atoms rather 

than the wavefunction. Functionals used within this theory contain how the electron density 

varies with position and how to treat electron exchange and correlation.63 Compared to the best 

possible theories, accuracy is somewhat decreased, and the user must choose the appropriate 

functional for the system under investigation – e.g. some functionals perform better on transition 

metals than main group compounds.64 On the other hand, the demand on computational 

resources is significantly reduced, and chemical systems larger than a handful of atoms become 
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feasible to study. Functionals fall into general classes depending on their level of theoretical 

sophistication;65 some of the simpler and commonly used apply the local density approximation 

(LDA, based on the exact exchange energy of a uniform electron gas), the generalized gradient 

approximation (GGA, adds a spin dependence to the gradient) and meta-GGA (adds a 

dependence on spin kinetic energy density).66 

These aforementioned weaknesses have not precluded the use of DFT in calculating 

BDEs. In fact, DFT is broadly applicable to many systems and can predict periodic trends in 

chemical bonding.67 It also successfully describes bonding energetics in compounds that are 

useful as chalcogen sources in nanocrystal synthesis, including disulfides,68, 69 diselenides70, 71 

and phosphine chalcogenides.72 An added advantage to performing DFT calculations is that they 

provide a wealth of information about the molecule in addition to the property of immediate 

interest, including bond angles, bond distances and electronic structure. Comparing these results 

with QSAR procedures73 such as Hammett constants74 verifies accuracy as well as lends 

additional insight into how molecular structure influences bond strengths. In all, these data 

provide a more complete picture of the molecule in question and shows how its constituent 

functional groups influence its bond strengths and reactivity. 

The purpose of this thesis is to explore the molecular chemistry involved in synthesizing 

nanomaterials. Computationally studying the bond dissociation energies of organic disulfides 

and diselenides proves to be a reliable method for rationalizing the outcome of the synthesis of 

cadmium sulfide and cadmium selenide nanoparticles. This same method also predicts the 

reactivity of phosphine sulfide and selenide molecules, and further shows that bond length is not 

necessarily correlated with bond strength.75 The results of this work also have impacts in areas 

outside of nanomaterial synthesis, such as atom transfer reactions.76 This thesis also describes the 
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use of photochemical decomposition of a cobalt coordination complex to produce reliably small 

cobalt oxyhydroxide nanocrystals. This demonstrates an intriguing alternative method to 

nanoparticle synthesis and results more generally fit into the fields of photochemical kinetics and 

coordination chemistry. 

 

Thesis organization 

 Chapter 2 describes the synthesis, characterization and formation mechanism of spherical 

cobalt oxyhydroxide (Co(O)OH) nanocrystals. The formation of these nanocrystals proceeds 

through the aquation of [Co(NH3)5Cl]2+ to give [Co(NH3)5(H2O)]3+ before slow, photoinduced 

release of NH3 from the aqua complex. The absorbance spectrum of these particles showed an 

onset consistent with semiconducting behavior; this was further verified by electronic structure 

calculation in the Vienna Ab-initio Simulation Package. Cobalt oxyhydroxide exhibits a phase 

transition to cobalt(II,III) oxide (Co3O4) at 251 °C for large size particles. Small particles 

prepared by photolysis exhibit this shape-conserved phase transition at 206 °C according to 

thermogravimetric analysis. Other members of the Vela group, Yijun Guo and Purnima Ruberu, 

carried out the transmission electron microscopy (TEM) characterization. 

 Chapter 3 discusses computational screening of disulfides and diselenides as precursors 

for the synthesis of cadmium sulfide or selenide nanocrystals. Based on bond dissociation 

energies, disulfides with strong C-S and weak S-S bonds produce tetrapod-shaped nanocrystals, 

while disulfides with weaker C-S bonds produce spherical nanocrystals. Further weakening of 

precursor C-S bonds leads to particles that grow faster with little shape control.  Diphenyl 

disulfide possesses strong C-S bonds and does not yield any CdS under the experimental 

conditions; that said, mixing it with other disulfide precursors affords nanocrystals of tetrapod 
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morphology. This implies that the S-S bond of diphenyl disulfide might break during synthesis 

and stabilize nanoparticle growth in specific directions. In close collaboration, Yijun Guo, a 

member of the Vela group, carried out the experimental work for this chapter of the thesis. 

 Chapter 4 extends the concept of computational screening by calculating bond 

dissociation energies to tertiary phosphine sulfide and phosphine selenide molecules. Creating 

molecules with varying degrees of electron density on the P—S or P—Se unit causes significant 

differences in the bond strength. Furthermore, the length of this bond increases with increasing 

bond strength, which is counter to the notion that shorter bonds are stronger. We rationalize this 

by showing that stronger bonds have greater negative charge about the S or Se, which leads to a 

longer bond with more ionic character. Prof. Hua-Jun Fan and Ian Shortt at Prairie View A&M 

University in Prairie View, Texas provided vibrational frequency analysis and discussion for this 

manuscript. 
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Abstract 

 Photochemical methods facilitate the generation, isolation and study of metastable 

nanomaterials having unusual size, composition, and morphology. These harder-to-isolate and 

highly reactive phases, inaccessible using conventional high-temperature pyrolysis, are likely to 

possess enhanced and unprecedented chemical, electro-magnetic and catalytic properties. We 

report a fast, low temperature and scalable photochemical route to synthesize very small (3 nm) 

monodisperse cobalt oxyhydroxide (Co(O)OH) nanocrystals. This method uses readily and 

commercially available pentaamminechlorocobalt(III) chloride, [Co(NH3)5Cl]Cl2 under acidic or 

neutral pH and proceeds under either near-UV (350 nm) or Vis (575 nm) illumination. Control 

experiments showed that the reaction proceeds at competent rates only in the presence of light, 

does not involve a free radical mechanism, is insensitive to O2, and proceeds in two steps: (1) 

Aquation of [Co(NH3)5Cl]2+ to yield [Co(NH3)5(H2O)]2+, followed by (2) slow photoinduced 

release of NH3 from the aqua complex. This reaction is slow enough for Co(O)OH to form, but 

fast enough so that nanocrystals are small (ca. 3 nm).  The alternative dark thermal reaction 

proceeds much more slowly and produces much larger (250 nm) polydisperse Co(O)OH 

aggregates. UV-Vis absorption measurements and ab-initio calculations yield a Co(O)OH band 
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gap of 1.7 eV. Fast thermal annealing of Co(O)OH nanocrystals leads to Co3O4 nanocrystals 

with overall retention of nanoparticle size and morphology. Thermogravimetric analysis shows 

that the oxyhydride to mixed-oxide phase transition occurs at significantly lower temperatures 

(up to T = 64° C) for small nanocrystals compared to bulk. 

 

Introduction 

 Nanotechnology is rapidly evolving toward the fabrication of ever more complex hetero-

structured nanomaterials with precise morphology, composition and properties.1-3 Traditional 

nanomaterial syntheses rely heavily on thermal decomposition or “pyrolysis” of precursors in 

high-boiling solvents at high temperature, often in excess of 250-300°C. Under such conditions, 

isolating highly reactive and/or unstable nanocrystal phases can be challenging. An example is 

doped nanocrystals, where the dopants or chemical “defects” sit within just a few lattice 

parameters from the nanocrystal surface and get easily thermally extruded, diffusing away in 

favor of a more stable homogeneous lattice under typical synthesis temperatures.4,5 These 

limitations severely narrow the range of metastable nanocrystalline phases that can be built 

through traditional high temperature pyrolysis. This problem is of particular timeliness and 

relevance because it is harder-to-isolate the more reactive metastable phases that are most likely 

to possess enhanced magnetic, chemical and catalytic properties, and perhaps also unprecedented 

optoelectronic properties. 

 Photochemistry is regularly employed by molecular chemists to generate highly reactive 

species. Similarly, light may be an ideal tool for building metastable nanomaterials.6 Light-

induced reactions usually proceed through alternate pathways at low temperature. Chalcogenide-

based nanomaterials such as bismuth selenide nanocrystals7 and tellurium nanorods,8 which 
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previously could not be prepared thermally (by simple heating), were recently prepared 

photochemically. Surface-bound platinum and palladium nanoparticles were selectively photo-

deposited along site-specific segments of axially graded semiconductor nanorods by carefully 

selecting the irradiation wavelength.9,10 Soluble gold nanoparticles11 and gold nanorods,12 and 

oxides such as ceria nanocrystals,13 were also prepared with the aid of light. 

 Cobalt oxyhydroxide (Co(O)OH), also referred to by its mineral name of “heterogenite”, 

is an example of a metastable phase that can be difficult to isolate at the nanoscale using 

conventional preparative methods. Co(O)OH is an active component in gas (CO) sensing and 

detection, oxygen evolution catalysts, and alkaline (Li) batteries.14 Isolating Co(O)OH requires 

stabilizing Co(III) against Co(II) under basic conditions while preventing formation of Co3O4, a 

common byproduct,15-17 or precipitation of cobalt hydroxides.18,19 Typical preparations involve 

treating Co(OH)2 or other Co(II) source with an oxidant such as hydrogen peroxide (H2O2) or 

sodium hypochlorite (NaClO) at pH14.20-23 These thermal reactions are usually slow, taking up 

to 18 h at 45 °C or 6 h at 120 °C.14,20 They tend to produce large ca. 500nm aggregates of 

clustered 20nm20nm hexagonal nanocrystals, although certain conditions yield isolated 

120nm120nm hexagonal nanocrystals.14,20 Chelate(EDTA)- and sonication-assisted syntheses 

produce even larger Co(O)OH aggregates.23,24 To control particle size, spatially constrained or 

“caged” syntheses have been performed using Ferritin as a template.25-27 

 Here, we describe a room temperature (RT) photochemical synthesis of small ca. 3 nm 

Co(O)OH colloidal nanocrystals in as little as 2-4 hours under either ultraviolet (UV) or visible 

(Vis) light irradiation. This method uses readily available precursors such as 

pentaamminechlorocobalt(III) chloride, [Co(NH3)5Cl]Cl2, and whole-flask illumination with 

widely available fluorescent lamps. In contrast, we show that similar thermal reactions, run by 
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heating the sample to 80°C overnight, lead to larger 100-300 nm Co(O)OH aggregates. We 

present complete optical, structural, and computational characterization and modeling for 

Co(O)OH, and use the photochemically and thermally produced nanocrystals as precursors for 

the synthesis of differently-sized Co3O4 nanocrystals via thermal annealing. 

Experimental 

 Materials. Cobalt(II) nitrate hexahydrate (Co(NO3)2•6H2O, 99.999%), 

pentaamminechlorocobalt(III) chloride ([Co(NH3)5Cl]Cl2, 98%), concentrated ammonium 

hydroxide (NH4OH, ACS Reagent), and (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO, 98%) 

were purchased from Aldrich. Hexaamminecobalt(III) chloride ([Co(NH3)6]Cl3, 99.999%) was 

purchased from Strem. Sodium bicarbonate (NaHCO3, ACS), concentrated nitric acid (HNO3, 

ACSPlus), concentrated hydrochloric acid (HCl, ACSPlus) and hydrogen peroxide (H2O2, 30%) 

were purchased from Fisher. Pentaamminechlorocobalt(III) perchlorate, [Co(NH3)Cl](ClO4)2 

was synthesized as reported previously.28 All chemicals were used as received unless specified 

otherwise. 

 Synthesis. Co(O)OH nanocrystals. Photochemical Synthesis. 

Pentaamminechlorocobalt(III) perchlorate, [Co(NH3)Cl](ClO4)2 (30.8 mg, 81.4 mol) or 

pentaamminechlorocobalt(III) chloride, [Co(NH3)5Cl]Cl2 (41.5 mg, 166 mol) was dissolved in 

15 mL of either deionized water or 0.01 M aqueous HCl. The solution was placed inside a 

Rayonet photoreactor and irradiated at 350 nm for 2 h or at 575 nm for 7 h. 9 A dark brown 

colloidal suspension with a pH of ca. 8-9 formed. Photochemically-produced Co(O)OH 

nanocrystals were separated by centrifugation (4000 rpm × 5 min), and were re-suspended in 

methanol.  
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 Thermal synthesis. In the dark, [Co(NH3)5Cl]Cl2 (837 mg, 332 mol) was dissolved in 30 

mL deionized water in a resealable Schlenk bomb, wrapped in aluminum foil, and heated in a 

pre-equilibrated oil bath to 80 °C for 24 h. The reaction mixture was cooled to R.T. and 

thermally-produced Co(O)OH nanocrystals separated by centrifugation (4000 rpm × 5 min). 

 Co3O4 nanocrystals. Dry Co(O)OH nanocrystals prepared either photochemically or 

thermally (420 mg, 4.57 mmol) were weighed in a scintillation vial and heated for 30 min in a 

muffle furnace at 250 °C or 280 °C, respectively.  

 Control Experiments. Thermal controls. In the dark, [Co(NH3)5Cl]Cl2 (84.9 mg, 339 

mol) was dissolved in 30 mL of either deionized water or 0.01 M aqueous HCl in a resealable 

Schlenk bomb, wrapped in aluminum foil, and either kept at RT or heated in a pre-equilibrated 

oil bath to 80° C. Reaction progress was monitored by UV-Vis for 24-96 h.  

 Precursor screening. Hexaaquacobalt(II). Cobalt(II) nitrate hexahydrate, 

Co(NO3)2•6H2O (47.1 mg, 162 mol) was dissolved in 14 mL deionized water, and 0.1 M 

ammonia was added dropwise until pH = 7.4.29 This pink solution, containing [Co(H2O)6]
2+ ions, 

was irradiated at 350 nm for 2 h.  

 Hexaaquacobalt(III). A solution of sodium bicarbonate (3.41 g, 40.6 mmol), 30% 

hydrogen peroxide, H2O2 (0.1 mL), and deionized water (10 mL) was added slowly to a solution 

of Co(NO3)2•6H2O (0.5561 g, 1.910 mmol), 30% H2O2 (0.1 mL) and deionized water (10 mL). 

The resulting deep green solution was added slowly to 4 M HNO3 (80 mL) to yield a deep blue 

solution containing [Co(H2O)6]
3+ ions.29 The solution was irradiated at 350 nm for 1 h, giving a 

light pink solution characteristic of hexaaquacobalt(II), [Co(H2O)6]
2+ ions. 

 Hexaamminecobalt(III). Hexaamminecobalt(III) chloride, [Co(NH3)6]Cl3 (395.1 mg, 

1.477 mmol) was dissolved in 150 mL deionized water. This solution was irradiated at 350 nm 
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for 18 h. The reaction mixture was centrifuged (4000 rpm × 5 min) to give dark brown Co(O)OH 

powder.   

 Anaerobic synthesis: Probing the effect of O2. [Co(NH3)5Cl]Cl2 (40.1 mg, 1.60 mmol) 

was dissolved in 15 mL deionized water. The solution was sparged with Ar for 15 min, sealed, 

and evacuated under dynamic vacuum for 3 min, then refilled with Ar and the process repeated 3 

times. This solution was irradiated at 350 nm for 2 h.  

 Radical trap effect. [Co(NH3)5Cl]Cl2 (39.3 mg, 1.57 mmol) was dissolved in 15 mL 

deionized water. 2,2,6,6-tetramethylpiperidine 1-oxyl, TEMPO (55.3 mg, 3.54 mmol) was then 

added. The homogeneous solution was irradiated at 350 nm for 2 h. The reaction mixture was 

centrifuged (4000 rpm × 5 min) to give dark brown Co(O)OH powder and an orange supernatant 

(soluble TEMPO). 

 Photolysis and Characterization. Photolyses utilized either a fan-cooled Rayonet® 

photoreactor with 16 side-on 350 nm lamps (35 nm fwhm, intensity = 136 W/m2)9 or 575 nm 

lamps (75 nm fwhm, intensity = 47.2 W/m2).   

 Absorption spectroscopy. Ultraviolet-Visible-Near-Infrared (UV-Vis-NIR) absorption 

spectra were recorded with a photodiode array Agilent 8453 spectrophotometer. Solvent 

absorption was subtracted from all spectra. We estimated the absorption coefficient of ca. 3 nm 

Co(O)OH nanocrystals to be  = 8.0×104 M-1·cm-1 at 680 nm (1.82 eV) and  = 1.6×106 M-1·cm-1 

at 360 nm (3.44 eV).  

 X-Ray diffraction. Powder X-ray diffraction (XRD) data were measured using a Scintag 

XDS-2000 diffractometer equipped with a theta-theta goniometer, a sealed-tube solid-state 

generator providing Cu-Kα radiation, and an air-cooled Kevex Psi Peltier silicon detector. 

 Transition Electron Microscopy (TEM). TEM was conducted on carbon-coated copper 
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grids using a FEI Technai G2 F20 Field Emission scanning transition electron microscope 

(STEM) at 200 kV. Elemental composition was characterized by energy dispersive spectroscopy 

(EDS) in STEM mode.  

 Thermo-Gravimetric Analysis (TGA). TGA was conducted on a TA Instruments 2950 

TGA at ISU's Materials Analysis Research Laboratory. The sample was heated in N2 at 20 

°C/min to 520 °C at a resolution of 5.0 °C. 

 Computational details. Computations were completed on the CRUNCH system 

supported by the Computation Advisory Committee of Iowa State University. Band gaps were 

determined by calculating the density of states diagram and band structure using the Vienna Ab-

initio Simulation Package (VASP). Projector-augmented wave (PAW) pseudopotentials30 and the 

Perdew-Burke-Ernzerhoff (PBE) generalized gradient approximation (GGA)31 were used. A 

Monkhorst-Pack k-points grid of 12124 was used to sample the first Brillouin zone for 

reciprocal space integration. We utilized the GGA+U method to better describe the 

experimentally observed band gap. We determined a value of U = 3.2 eV gave the best 

agreement with experiment. 

 

Results and discussion 

 Photochemical decomposition of [Co(NH3)5Cl]X2 (X = Cl, ClO4). As part of our studies 

of energy transfer between photoactive nanocrystals and transition metal complexes, we 

observed that irradiating aqueous solutions containing pentaamminechlorocobalt(III) ions with 

350 nm light at 21-24 °C (RT) and pH 2 (acidified with 0.01 M HCl or HClO4) for 3 h results in 

formation of cobalt oxyhydroxide (Co(O)OH) nanocrystals. 
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 Pentaamminechlorocobalt(III), [Co(NH3)5Cl]2+ is a purple-colored water-soluble 

complex ion characterized by two absorption maxima (max) at 355 nm and 525 nm (Figure 1). 

After 350 nm irradiation for 35 min, aqueous solutions of [Co(NH3)5Cl]2+ become brown, with 

two new, very intense bands appearing at 360 nm (max) and 650 nm (shoulder). After 350 nm 

irradiation for 70 min, the initial absorption peaks from [Co(NH3)5Cl]2+ are no longer visible. 

Centrifugation of this solution results in separation of a brown powder that can be re-suspended 

in methanol. The pH of the supernatant is 8.8. We later observed that the brown powder, which 

consists of nanocrystalline Co(O)OH (see below), also forms when 575 nm light is used, and 

even when the reaction is run in the absence of acid, in which case the initial solution pH is 6.5 

while the supernatant pH is 8.8. 

 

Figure 1. UV-Vis absorption spectra of thermal and photochemical Co(O)OH in methanol, and of 

[Co(NH3)5Cl]Cl2, [Co(NH3)5(OH2)]Cl3 and Co3O4 in water. 

 Powder X-ray diffraction (XRD) shows that the brown precipitate consists of crystalline 

cobalt oxyhydroxide, Co(O)OH (Figure 2). Cobalt oxyhydroxide crystallizes in a hexagonal unit 

cell with lattice parameters a = 2.855 Å and c = 8.805 Å. The structure consists of anionic 

[Co(O)O]- layers of Co3+ ions,32,33 each octahedrally-coordinated by triply bridging oxide ligands 

(3-O2-); [Co(O)O]- layers are held together by hydrogen bonds, with each H+ ion bridging 

together two oxides from adjacent layers (Figure 3). Transmission electron microscopy (TEM) 
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shows that photochemically-produced Co(O)OH consists of relatively monodisperse, small 3.3 

nm ± 0.9 nm nanocrystals (Table 1, Figure 4). This morphology agrees well with the crystalline 

domain (grain size) of ca. 3.2 nm obtained from XRD peak widths (Table 1).34 High-resolution 

(HR) TEM shows lattice fringes in all nanocrystals, and selected area diffraction (SAD) patterns 

show d-spacings of 0.45 nm (003), 0.24 nm, 0.22 nm (102) and 0.21 nm (006), each of which is 

in close agreement with the d-spacings observed in the powder XRD pattern (Figure 1). Energy 

dispersive X-ray diffraction (EDS) area scans confirm the presence of both cobalt and oxygen. 

 
Figure 2. XRD data for: Photochemically prepared Co(O)OH (a), thermally prepared Co(O)OH (b), bulk 

Co(O)OH (c), Co3O4 made by thermal annealing of photochemically-prepared Co(O)OH (d), Co3O4 made 

by thermal annealing of thermally-prepared Co(O)OH (e), and bulk Co3O4 (f). 
 



www.manaraa.com

23 

 

 
Figure 3. Crystalline structure of Co(O)OH viewed down the y-axis (a) and z-axis (b). (Gray = Co; Red = 

O; White = H). 

 

 Thermal decomposition of [Co(NH3)5Cl]X2 (X = Cl, ClO4). To probe the role of light in 

the formation of cobalt oxyhydroxide, we carried out several thermal syntheses and mechanistic 

control experiments (see below). Aqueous solutions containing pentaamminechlorocobalt(III), 

[Co(NH3)5Cl]2+, kept in the dark at 21-24 °C (RT), show no appreciable particle formation for 

over 4 days (>96 h). Similarly, heating aqueous solutions containing [Co(NH3)5Cl]2+ to 80 °C at 

pH 2 (acidified with HCl) in the dark for 24 h does not form cobalt oxyhydroxide, Co(O)OH, but 

likely the aquation product, pentaammineaquacobalt(III), [Co(NH3)5(OH2)]
3+. UV-Vis spectra 

show a blue-shift of max values from 355 nm and 525 nm to 305 nm and 509 nm, respectively 

(Figure 1, see below). However, heating aqueous solutions containing 
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pentaamminechlorocobalt(III), [Co(NH3)5Cl]2+ ions at 80 °C and pH 6.5 (near-neutral pH 

without acid or base added) in the dark for 24 h results in formation of brown-colored Co(O)OH, 

as determined from XRD (Figure 2). The UV-Vis absorption spectrum of this thermally prepared 

Co(O)OH shows two intense bands at 410 nm (max) and 710 nm (shoulder), which are red-

shifted compared to the photochemically prepared Co(O)OH (Figure 1). After separation of the 

brown precipitate by centrifugation, the colorless supernatant has a pH of 9.1 and is completely 

transparent in the 300-1100 nm spectral region. However, in contrast to the small and highly 

crystalline nature of the photochemically-produced Co(O)OH, TEM micrographs show the 

thermally-prepared Co(O)OH consists of large aggregates of 70 nm  10 nm crystalline rods 

embedded within larger ca. 250 nm amorphous flake-like regions (Table 1, Figure 5).14 The 

crystalline domain (grain size) obtained from XRD peak widths is ca. 17nm (Table 1).34 High-

resolution (HR) TEM micrographs show lattice fringes only on the rod-like structures (Figure 5). 

 

Table 1. Synthesis of Co(O)OH and Co3O4 nanocrystals under different conditions. 

# Precursor Conditions Product TEM Particle 

Size/nm 

XRD Particle 

Size/nm 

1 [Co(NH3)5Cl]X2 

(X = Cl, ClO4) 

Photochemical (350nm or 

575nm), 2<pH<6.5 (aqueous)a 

Co(O)OH 

(1.9 eV)c 

3.3  0.9 3.2 

2 [Co(NH3)5Cl]X2 

(X = Cl, ClO4) 

Thermal (80 °C), in the dark, 

pH=6.5 (aqueous)a 

Co(O)OH 

(1.7 eV)c 

ca. 250 

(aggregates) 

17 

3 Co(O)OH (Photo 3.3 

nm) 

Annealing at 250 °C, 30 min 

(dry) 

Co3O4 5.01.0 3.8 

4 Co(O)OH (Thermal 

250 nm) 

Annealing at 280 °C, 40 min 

(dry) 

Co3O4 ca. 125 

(aggregates) 

39 

a[Co]total = 0.01 M. bCalculated from XRD peak widths using Scherrer equation. cObserved absorption 

onset. 
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Figure 4. Representative TEM (a), selected area diffraction (SAD) (b), and high-resolution (HR) TEM (c) 

of photochemically-prepared Co(O)OH nanocrystals. Representative TEM (d) of Co3O4 prepared by 

thermal-annealing of photochemically-prepared Co(O)OH. Particle size histograms of photochemically-

prepared Co(O)OH (e), and Co3O4 prepared by thermal-annealing of photochemically-prepared Co(O)OH 

(f). 

 

 
Figure 5. TEM of thermally-prepared Co(O)OH nanocrystals (approximate size of the rod-like structures 

is 70 nm  10 nm) (a), and Co3O4 nanocrystals prepared by thermal-annealing of thermally-prepared 

Co(O)OH (approximate size of rod-like structures is 30 nm × 3 nm) (b). 
 

 Mechanistic and control experiments. To gain a better understanding on the formation 

mechanism of Co(O)OH nanocrystals, we subjected several starting materials to different 

reaction conditions. Because cobalt oxyhydroxide (Co(O)OH) features Co3+ ions in an all-

oxygen coordination environment, we considered the possibility that its formation could involve 
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a cobalt-hexaaqua, [Co(OH2)6]
n+, complex intermediate. We irradiated hexaaquacobalt(III), 

[Co(OH2)6]
3+ solutions at 350 nm under acidic pH (1<pH<2). Irradiation of the deep blue 

[Co(OH2)6]
3+, with max at 400 nm and 605 nm, leads in 1 h to formation of the light pink 

hexaaquacobalt(II), [Co(OH2)6]
2+, with max at 510 nm,28,35,36 but no Co(O)OH (entry 1 in Table 

2, Figure 6). Repeating this experiment at higher pH results in spontaneous, thermal generation 

of [Co(OH2)6]
2+. This is consistent with the known reactivity of Con+ ions in aqueous solutions: 

The Pourbaix speciation diagram for aqueous cobalt clearly shows that Co(III) is stable only 

within a very narrow pH and E region characterized by very acidic and oxidizing conditions.37,38 

In turn, irradiation of [Co(OH2)6]
2+ with 350 nm light for 2 h in near-neutral solution (pH = 6.5) 

leads to no appreciable formation of Co(O)OH (entry 2 in Table 2, Figure 6). This implies that 

neither hexaaquacobalt(III) nor hexaaquacobalt(II) are competent intermediates in forming 

Co(O)OH. 

Table 2. Screening of potential intermediates during 

photochemical Co(O)OH nanocrystal synthesis.a 

# Screened Co precursor pH Observed Co product 

1 [Co(OH2)6]3+ (aq) 1 [Co(OH2)6]2+ (aq) 

2 [Co(OH2)6]2+ (aq) 6.5 (no reaction) 

3 [Co(NH3)6]3+ (aq) 2 to 6.5 Co(O)OH (slow, 18 h) 

4 [Co(NH3)5Cl]2+ (aq) 2 to 6.5 [Co(NH3)5(OH2)]3+ (aq) 

5 [Co(NH3)5(OH2)]3+ (aq) 2 to 6.5 Co(O)OH (fast, 3h) 

a[Co]total = 0.01 M, R.T., 350 nm irradiation. 

 Given the relative instability of Co(III) in aqueous solutions in the absence of strong field 

ligands, we then considered the possibility that a redox process could be involved during the 

formation of cobalt oxyhydroxide (Co(O)OH). Specifically, we tested whether molecular 
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oxygen, O2, from air21,22 was necessary as an oxidant by repeating the photochemical synthesis 

of Co(O)OH in degassed water solvent starting with pentaamminechlorocobalt(III) chloride, 

[Co(NH3)5Cl]Cl2. Upon irradiation, the UV-Vis absorption spectrum unambiguously showed the 

formation of Co(O)OH particles under such anaerobic conditions, just as in the original aerobic 

experiments. Therefore, O2 is not necessary for the reaction to proceed. We also probed whether 

the reaction involved free radical species by repeating the photochemical synthesis of Co(O)OH 

starting with [Co(NH3)5Cl]Cl2, in the presence of TEMPO as a radical trapping agent. After 2 h, 

a brown precipitate formed, and the final supernatant's pH was 8.6. UV-Vis confirmed presence 

of Co(O)OH in the reaction mixture. Therefore, the reaction does not appear to proceed through 

a free radical mechanism. To test if a reactive Co-Cl bond is necessary for nanocrystal 

formation,39-41 we irradiated solutions of hexaamminecobalt(III), [Co(NH3)6]
3+. This leads to 

formation of cobalt oxyhydroxide, however at a much slower rate, requiring ca. 18 h to produce 

significant amounts of Co(O)OH precipitate after centrifugation (entry 3 in Table 2, Figure 6). 

Therefore, a labile Co-halide(Cl) bond in the [Co(NH3)5Cl]2+ precursor is important for fast 

Co(O)OH formation. Photochemical aquation of [Co(NH3)5Cl]2+ is well known to yield 

[Co(NH3)5(H2O)]3+,28,35,36 which appears to be the actual active species.  As shown in entries 4-5 

in Table 2, the irradiation of freshly generated [Co(NH3)5(H2O)]3+ yields Co(O)OH rapidly.  All 

of the data suggest that the size of the nanocrystals is determined by the rate of photoinduced 

release of NH3 from [Co(NH3)5(H2O)]3+.  The rate is low enough for Co(O)OH to form, but high 

enough so that nanocrystals are small (ca. 3 nm) and do not aggregate as they do in the slower 

thermal reaction. Interestingly, a recent paper reported the photochemical preparation of porous 

nanocrystals of different metal oxides and Co(O)OH under UV-illumination. Co(O)OH 

nanoflowers were made from cobalt(II) sulfate heptahydrate (CoSO4•7H2O) and potassium 
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persulfate (K2S2O8) in water.43 However, the reported particle sizes were much larger, attesting 

to the importance of using [Co(NH3)5Cl]2+ salts as precursors to obtain small Co(O)OH 

nanocrystals. 

 
Figure 6. UV-Vis spectra of aqueous [Co(H2O)6](NO3)3 under acidic pH (1-2), and aqueous 

[Co(NH3)6]Cl3 and [Co(H2O)6]Cl2 under near-neutral pH (6-7). 
 

 Finally, we also sought to obtain a better understanding of the intermediate(s) involved in 

the reaction and its overall kinetics. For this we irradiated a solution of 

pentaamminechlorocobalt(III) chloride, [Co(NH3)5Cl]Cl2, starting at pH 6.5. Every 4 h, the 

reaction mixture was centrifuged, the Co(O)OH precipitate removed, and the absorption of the 

supernatant recorded. The supernatant was then irradiated again for 4 h. This procedure was 

repeated four times, for a total irradiation time of 16 h. The resulting series of spectra obtained 

for the supernatant solution show that the initial [Co(NH3)5Cl]2+ ion is first transformed to the 

aquation product, [Co(NH3)5(OH2)]
3+ in under 4 h, as evidenced by a blue-shift in max from 525 

nm to 509 nm, respectively (Figures 1 and 7). The estimated apparent rate of reaction under these 

conditions is ≈ 0.4 mM/h with a 1st half-life of approximately 9 hours. 



www.manaraa.com

29 

 

 
Figure 7. UV-Vis spectra of optically clear supernatant solutions during photochemical Co(O)OH 

synthesis (a). Inset (b) shows absorbance at max = 509 nm vs. time. 

 
Figure 8. Density of states (DOS) diagram for Co(O)OH calculated using the GGA+U method. Red, 

green and blue represent states of s, p and d character, respectively. 
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 Computational modeling. We used the Vienna Ab-initio Simulation Package, VASP v. 

4.6, and the GGA+U method with PBE pseudopotentials to model and estimate the bulk bandgap 

of cobalt oxyhydroxide, Co(O)OH. We implemented a Hubbard U parameter42 to better describe 

the localization of the electrons around the Co3+ ions and thus provide a realistic band gap. The 

GGA+U method provided an accurate description of the band gap in Co3O4.
43 Previous quantum 

chemical modeling yielded a Co(O)OH band gap of 1 eV.44 A density of states (DOS) diagram 

computed using a U = 3.2 eV shows a band gap of about 1.7 eV (Figure 8). This is a close fit 

with our experimental absorption data for thermally prepared Co(O)OH nanocrystals, which 

show a first absorption peak (shoulder) at approximately 710 nm (1.7 eV) (Figure 1). In contrast, 

photochemically prepared Co(O)OH nanocrystals show a significantly bluer first absorption peak 

(shoulder) at approximately 650 nm (1.9 eV). Because the average single crystal domain (grain) 

size obtained from XRD for thermally prepared Co(O)OH (ca. 17 nm, Table 1) is significantly 

larger than for photochemically prepared Co(O)OH (ca. 3 nm, Table 1), we conclude that there is 

some degree of quantum confinement in the latter. Using only GGA-PBE yielded a band gap of 

0.6 eV (2,067 nm). Adding U = 1.0 eV gave a band gap of ca. 1.0 eV (1,240 nm), while a value 

of U = 4.0 eV gave an unrealistically large band gap of 2.0 eV (620 nm). The partial density of 

states diagram shows that the d-orbital splitting in Co3+ is the source of this band gap (Figure 8). 
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Figure 9. TGA of thermally-(a) and photochemically-prepared (b) Co(O)OH nanocrystals. 
 

 Thermal analysis. We used thermogravimetric analysis (TGA) to probe the temperature-

induced mass loss of photochemically- and thermally-prepared Co(O)OH (Figure 9). In both 

cases, plots of mass loss versus temperature show a major change corresponding to the phase 

transition from cobalt oxyhydroxide to mixed-cobalt(II,III) oxide: 12Co(O)OH  4Co3O4 + 

6H2O + O2.
14 Interestingly, this transition occurs at significantly lower temperature for 

photochemically-prepared Co(O)OH, 206 °C, than for thermally-prepared Co(O)OH, 251°C. In 

the bulk, the reported transition temperature is even higher, 258-270 °C. We attribute this 

significant drop in phase transition temperature to a sharp decrease in the amount of heat needed 

to phase transform very small ca. 3 nm (photochemical) Co(O)OH nanocrystallites to Co3O4 

compared to larger ca. 250 nm (thermal) nanocrystallites or bulk Co(O)OH (Table 1, Figure 

9).45-50 
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 Preparative transformation of Co(O)OH into Co3O4 nanocrystals. Based on our TGA 

analysis, we explored the synthetic utility of Co(O)OH in making Co3O4 nanocrystals.14,20,51-53 

Heating the photochemically-prepared Co(O)OH to 250 °C for 30 min or the thermally-prepared 

Co(O)OH to 280 °C for 30 min leads to the formation of cobalt(II,III) oxide, Co3O4, as 

confirmed by UV-Vis and XRD. In both cases, the UV-Vis spectrum of the annealed product is 

significantly red shifted compared to the starting material, with new max appearing at 400 nm 

(3.1 eV) and 750 nm (1.7 eV) (Figure 1). The reddest peak (band offset) is not far from the 

literature band gap of 1.5 eV (827 nm),54 and is visually manifested by a color change from 

brown for Co(O)OH to very dark/off-gray for Co3O4. The powder XRD pattern of the annealed 

samples shows disappearance of the major Co(O)OH peak at 2θ = 20° and appearance of a 

smaller Co3O4 peak at 2θ = 18° (Figure 2). Co3O4 has a spinel structure (lattice parameter a = 

8.08 Å) made of cubic close-packed O2- ions with Co2+ and Co3+ ions in tetrahedral and Co3+ 

octahedral holes, respectively. Interestingly, TEM micrographs of Co3O4 nanocrystals reveal a 

similar size, morphology and level of aggregation compared to the Co(O)OH starting 

materials.14,20 Co3O4 nanocrystals obtained from annealing the photochemically-prepared 

Co(O)OH nanocrystals are very small, 5.0 nm ± 1.0 nm (Table 1, Figure 5). To the best of our 

knowledge, this is one of the smallest Co3O4 nanocrystallite sizes reported in the literature.55 In 

contrast, TEM micrographs of Co3O4 nanocrystals obtained from annealing the thermally-

prepared Co(O)OH nanocrystals show presence of 30 nm × 3 nm crystalline rods embedded 

within larger ca. 150 nm aggregates (Figure 5 and Table 1). The morphologies observed by TEM 

correlate with the relative crystalline domains (grain sizes) of ca. 3.8 nm (photochemical 

Co(O)OH precursor) and ca. 39 nm (thermal Co(O)OH precursor) for Co3O4 nanocrystals 

obtained from XRD peak widths (Table 1).34 Therefore, the size and morphology of Co(O)OH 
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starting material controls to a significant extent the size and morphology of the Co3O4 product.56-

59 Similar transformations starting from Co(O)OH may be useful in the fabrication of lithium 

storage materials such as lithium cobalt oxide, LiCoO2. 

 

Conclusions 

In summary, we found a fast, low temperature and scalable photochemical route to 

synthesize very small (3 nm) monodisperse cobalt oxyhydroxide (Co(O)OH) nanocrystals. This 

method uses readily and commercially available [Co(NH3)5Cl]Cl2 under acidic or neutral pH and 

proceeds under either near-UV (350 nm) or Vis (575 nm) illumination. Control experiments 

showed that the reaction proceeds at competent rates only in the presence of light, does not 

involve a free radical mechanism, is insensitive to O2, and proceeds via two steps: (1) Aquation 

of [Co(NH3)5Cl]2+ to yield [Co(NH3)5(H2O)]3+, followed by (2) slow, photochemical release of 

NH3 from this complex. This reaction is slow enough for Co(O)OH to form, but fast enough so 

that nanocrystals are small (ca. 3 nm). The alternative dark thermal reaction proceeds much more 

slowly and produces much larger (250 nm) polydisperse Co(O)OH aggregates. UV-Vis 

absorption measurements and ab-initio calculations yielded a Co(O)OH band gap of 1.7 eV. Fast 

thermal annealing of Co(O)OH nanocrystals leads to Co3O4 nanocrystals with overall retention 

of nanoparticle size and morphology. Thermogravimetric analysis showed that the oxyhydroxide 

to mixed-oxide phase transition occurs at significantly lower temperatures (up to T = 64°C) for 

small nanocrystals compared to the bulk material. We expect that the use of similar 

photochemical methods will permit the generation, isolation and study of other metastable 

nanomaterials of unusual size, composition, and morphology. These harder-to-isolate and highly 
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reactive phases, inaccessible using conventional high-temperature pyrolysis, are likely to possess 

enhanced and unprecedented chemical, electro-magnetic and catalytic properties. 
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Appendix of supporting information   

 

Figure S1. High-resolution (HR) TEM and indexed selected area diffraction (SAD) (insets) of 

photochemically-prepared Co(O)OH nanocrystals. 
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CHAPTER 3 

 

SHAPE-PROGRAMMED NANOFABRICATION: UNDERSTANDING THE 

REACTIVITY OF DICHALCOGENIDE PRECURSORS 

Reprinted with permission from ACS Nano 2013, 7, 3616–3626. 
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Abstract  

 Dialkyl and diaryl dichalcogenides are highly versatile and modular precursors for the 

synthesis of colloidal chalcogenide nanocrystals. We have used a series of commercially 

available dichalcogenide precursors to synthesize II-VI semiconductor nanocrystals with a wide 

variety of shapes and sizes. Specific dichalcogenide precursors used are diallyl-, dibenzyl-, 

ditertbutyl-, diisopropyl-, diethyl-, dimethyl- and diphenyl-disulfide and diselenide. We find that 

the presence of two distinctively reactive C-E and E-E bonds makes the chemistry of these 

precursors much richer and more interesting than that of other precursors such as the more 

common phosphine chalcogenides. Computational studies (DFT) reveal that the dissociation 

energy of carbon-chalcogen (C-E) bonds in dichalcogenide precursors (R-E-E-R, E = S or Se) 

increases in the order (R): Diallyl < dibenzyl < ditertbutyl < diisopropyl < diethyl < dimethyl < 

diphenyl. The dissociation energy of chalcogen-chalcogen (E-E) bonds remains relatively 

constant across the series. The only exceptions are diphenyl dichalcogenides, which have much 

lower E-E bond dissociation energies. A decrease in C-E dissociation energy and with it R-E-E-

R precursor reactivity leads to progressively slower nucleation and higher selectivity for 

anisotropic growth, all the way from dots to pods to tetrapods. Under identical experimental 
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conditions, we obtain CdS and CdSe nanocrystals with spherical, elongated or tetrapodal 

morphology by simply varying the identity and reactivity of the dichalcogenide precursor. 

Interestingly, we find that precursors with strong C-E and weak E-E bond dissociation energies 

such as Ph-S-S-Ph serve as a ready source of thiol radicals that stabilize small CdE nuclei, 

facilitating anisotropic growth. These CdS and CdSe nanocrystals have been characterized using 

structural and spectroscopic methods. An intimate understanding of how molecular structure 

affects the chemical reactivity of molecular precursors enables highly predictable and 

reproducible synthesis of colloidal nanocrystals with specific sizes, shapes and optoelectronic 

properties for customized applications. 

 

Introduction 

 Dialkyl dichalcogenides (R-E-E-R; where R = alkyl or aryl, E = S, Se or Te) recently re-

emerged as highly versatile molecular precursors for the solution-phase synthesis of colloidal 

nanocrystals. Intriguingly, these dichalcogenides enable the isolation of metastable 

nanocrystalline phases with unusual composition and morphology. tBu-E-E-tBu (E = S or Se) 

precursors allow the isolation of CuInE2 and Cu2SnE3 nanocrystals with metastable wurtzite 

phases.1,2 A change in reaction solvent from oleylamine to squalene leads to CuInE2 nanocrystals 

with the more stable chalcopyrite phase.2,3 tBu-S-S-tBu serves as precursor to In2S3 nanorods,4 

SnxGe1−xSe nanocrystals,5 and Cu2-xS nanocrystals with a wide range of morphologies (from dots 

to dodecahedrons).6 tBu-Se-Se-tBu serves as precursor to SnSe7 and hexagonal BiSe8 

nanocrystals. Photolysis of tBu-Te-Te-tBu in aqueous micellar conditions yields Te0 nanorods.9 

Aqueous reaction of Me-Se-Se-Me with SnCl2 in an autoclave yields SnSe nanosheets.10 Ph-Se-

Se-Ph allows the isolation of hexagonal and cubic nanocrystals of CuInSe2 and Cu2-xSySe1-y.
11,12 
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Ph-Se-Se-Ph and Ph-Te-Te-Ph are useful alternatives to elemental chalcogenide precursors (Se 

or Te) in the synthesis of star-shaped SnTe and SnSe nanoparticles.13 In spite of their very rich 

chemistry, it remains unclear what factors play a determinant role in the outcome of specific 

nanocrystal preparations.  

 Using the far more common phosphine-chalcogenide precursors, we recently found that a 

single injection of premixed trioctylphosphine-sulfide (Oct3PS) and selenide (Oct3PSe) to a bis-

octadecylphosphonate-cadmium complex (Cd(ODPA)2) at 320 °C produces axially anisotropic 

CdS1-xSex nanorods characterized by having a thick, CdSe-rich “head” and a thin, CdS-rich 

“tail.”14,15 Using a combined experimental and computational approach, we showed that the 

mechanism of formation mechanism and the S-to-Se content of these compositionally graded 

CdS1-xSex nanorods are direct consequences of relative phosphine-chalcogenide precursor 

reactivity. Further, by tuning the sterics and electronics of a family of closely related R3P=E 

precursors (R = amide, alkyl, aryl or aryloxy; E = S or Se), we reproducibly and predictably 

synthesized CdE nanorods with controllable aspect (length-to-diameter) ratios between 10-100.16 

These observations open new avenues for achieving “bottom-up,” molecular-level control of 

composition, morphology and properties at the nanoscale. 

 Unlike phosphine-chalcogenides (R3P=E), which contain only one type of reactive bond 

(P=E), dichalcogenide precursors (R-E-E-R) contain two different types of reactive bonds (C-E 

and E-E). We were intrigued by the inherent modularity of these molecular precursors, and 

wondered how varying the substituents (R = alkyl, aryl) around the reactive -E-E- unit could 

affect dichalcogenide precursor reactivity and, ultimately, the outcome of nanocrystal 

preparations. Experimentally, we observe that differently substituted dichalcogenides lead to 

completely different nanocrystal morphologies, some lead to dots, others to rods or tetrapods. 
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The selectivity for such anisotropic structures is obviously affected by reaction parameters such 

as reaction time17 and temperature,18,19 precursor concentration,20 medium acidity,21 ligand type 

(amines,22-24 halides,52 phosphonic acids25,26) and chain length.27,28 Commonly used methods to 

obtain II−VI and IV-VI rods and tetrapods include seeded growth,29-32 continuous precursor 

injection,33,34 and noninjection routes.35 Dichalcogenides offer a unique system where the 

selectivity for anisotropic structures under identical experimental conditions can be directly 

traced back to the molecular structure and chemical reactivity of the molecular precursor used. 

Here we present the results of a combined experimental and computational study aimed at 

addressing this question. 

 

Experimental 

 Materials. Cadmium oxide (CdO, 99.998%) and oleic acid (90%) were purchased from 

Alfa Aesar; diallyl disulfide (Allyl-S-S-Allyl, 80%), dibenzyl disulfide (Bn-S-S-Bn, 98%), 

ditertiarybutyl disulfide (tBu-S-S-tBu, 97%), diisopropyl disulfide (iPr-S-S-iPr, 96%), diethyl 

disulfide (Et-S-S-Et, 99%), dimethyl disulfide (Me-S-S-Me, 99%), and dimethyl diselenide (Me-

Se-Se-Me, 96%) from Sigma-Aldrich; diphenyl disulfide (Ph-S-S-Ph, 99%), 1-octadecene (ODE, 

90%), and oleylamine (80-90%) from Acros; diethyl diselenide (Et-Se-Se-Et) and diphenyl 

diselenide (Ph-Se-Se-Ph, 98%) from Strem. 

 Synthesis. Dichalcogenide addition solution. Inside a glove box filled with dry N2, the 

dichalcogenide precursor (0.42 mmol) (61.0 mg Allyl-S-S-Allyl, 104 mg Bn-S-S-Bn, 75.0 mg 

tBu-S-S-tBu, 63.1 mg iPr-S-S-iPr, 51.0 mg Et-S-S-Et, 39.6 mg Me-S-S-Me, 91.0 mg Et-Se-Se-

Et, 79.0 mg Me-Se-Se-Me, or 131 mg Ph-Se-Se-Ph) was thoroughly dissolved in ODE (1.00 g, 

1.27 mL) to afford a homogeneous mixture. Cadmium chalcogenide particles. Inside a three-
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neck-flask, CdO (51.2 mg, 0.40 mmol), oleic acid (2.24 g, 8.00 mmol), oleylamine (2.14 g, 8.00 

mmol) and ODE (2.62 g, 3.32 mL) were degassed under vacuum at 80 °C for 30 min, refilled 

with Ar, and heated to 180 °C for 10 min until the mixture became a homogeneous, optically 

clear solution. The solution was cooled to 80 °C, degassed under vacuum at 80 °C for 30 min, 

refilled with Ar, and heated to 250 °C. After 5 min, the dichalcogenide addition solution (above) 

was quickly injected. Aliquots (0.10 mL) were taken at different times, added to the same 

amount of toluene (3 mL) every time, and analyzed by UV-Vis absorption and PL. After 40 min 

(disulfides) or 5-40 min (diselenides, see below), the mixture was allowed to cool to room 

temperature (RT). Nanocrystals were isolated and purified twice by washing with a 1:2 v/v 

acetone-methanol mixture and centrifugation at 4900 rpm for 5 min. 

 Optical Characterization. Absorption spectra were measured with a photodiode array 

Agilent 8453 UV-Vis spectrophotometer. Steady-state PL spectra were measured with a Horiba-

Jobin Yvon Nanolog scanning spectrofluorometer equipped with a photomultiplier detector. 

 Structural Characterization. Powder X-ray diffraction (XRD) was measured using Cu 

Kα radiation on a Scintag XDS-2000 diffractometer. Transmission Electron Microscopy (TEM) 

was conducted on carbon-coated copper grids using a FEI Technai G2 F20 field emission 

scanning transmission electron microscope (STEM) at 200 kV (point-to-point resolution <0.25 

nm, line-to-line resolution <0.10 nm). Particle dimensions were measured manually and/or with 

ImageJ for >50-100 particles. Averages are reported ± one standard deviation. 

 Computational methods. Bond dissociation energies (BDEs) were calculated using 

GAMESS36,37 at the DFT38 level of theory with the BMK (Boese-Martin Kinetics) functional,39 

which has been shown to provide accuracy near that of high-precision complete basis set (CBS) 

methods.40,41 Geometries were optimized using the 6-31G(d) basis set42 followed by single point 
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calculations with the 6-311G(d,p) basis set43 to determine BDEs.44 Frequency calculations were 

performed to obtain zero point energies and enthalpies at 273 K and to ensure that the Hessian 

matrices of the optimized geometries contained no negative eigenvalues.45 

 

Results and discussion 

 Seeking a deeper understanding of how molecular structure affects chemical precursor 

reactivity, we subjected different disubstituted dichalcogenides to a consistent set of nanocrystal 

forming conditions (Scheme 1). Briefly, we injected individual dichalcogenide precursors (1.1 

equiv.) to a freshly generated solution of Cd(oleate)2 (0.40 mol), oleic acid (20 equiv.) and 

oleylamine (20 equiv.) in 1-octadecene (ODE) (4.6 mL) at 250 °C. At regular intervals, we took 

small equal aliquots from the reaction mixture and monitored nanocrystal evolution (nucleation, 

growth, and ripening) by optical spectroscopy. After 40 min at 250 °C, we isolated and fully 

characterized the nanocrystalline products. We repeated this procedure for several different 

commercially available dichalcogenides having different alkyl and aryl substituents. 

 

Scheme 1 Reaction to form CdE nanocrystals 

 Dichalcogenide precursor chemistry: A springboard to nanocrystal shape diversity. Our 

experimental observations show that, in general, dichalcogenide precursors that reacted quickly 

produced spherical nanocrystals, while those that reacted more slowly produced nanocrystals of 

non-spherical morphology (often tetrapods). Figure 1 shows the time evolution of UV-Vis 

absorption spectra as well as final (after 40 min) TEM images of CdS nanocrystals obtained with 
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different dialkyl disulfides (R-S-S-R). UV-Vis spectroscopy shows the appearance of the first 

absorption (1S) peak characteristic of CdS nanocrystals within a few minutes for most 

precursors. Transmission electron microscopy (TEM) images show that some dichalcogenide 

precursors lead to the formation of CdS nanocrystals with a spherical morphology, while others 

lead to the formation of CdS nanocrystals with a tetrapod morphology.46-48 The majority of 

spherical CdS nanocrystals (dots) have a zinc blende (cubic) structure, while the CdS tetrapods 

are comprised of wurtzite (hexagonal) arms extending from the {111} facets of zinc blende 

(cubic) cores (seeds).49-51 Based on these results, it is clear that the structure of the molecular 

precursor has considerable influence on the rate of growth, size and morphology of the resulting 

nanocrystals. 

 

Figure 1. Representative TEM images after 40 min (left panel) and time evolution of UV-Vis absorption 

spectra (right panel) of CdS nanocrystals obtained with (a) diallyl-, (b) dibenzyl-, (c) ditertbutyl-, (d) 

diisopropyl-, (e) diethyl- and (f) dimethyl-disulfide precursors. (g) Diphenyl-disulfide was unreactive 
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under identical conditions (0.40 mol Cd(oleate)2, 1.1 equiv. R-S-S-R, 20 equiv. oleic acid, 20 equiv. 

oleylamine, 4.6 mL ODE, 250 °C). 

 

 Assessing the strength of C-E and E-E bonds from computations. To better understand 

these observations, we computationally studied the different dichalcogenide precursors using the 

GAMESS software. We computed their carbon-chalcogen (C-E) and chalcogen-chalcogen (E-E) 

bond dissociation energies (BDEs, Scheme 2) using density functional theory (DFT) with the 

Boese-Martin Kinetics (BMK) functional, which has been shown to be a viable method to 

calculate thermodynamic properties such as BDEs at a lower computational cost than high-

precision methods such as G3. Table 1 and Figure 2 show the computed BDEs of all precursors 

we investigated. Full computational results, including bond distances and dihedral angles are 

available in the Appendix. 

 

Scheme 2 

 
Table 1. Calculated bond dissociation (homolysis) energies (BDEs) for dialkyl dichalcogenide precursors (R-E-E-R, 

E = S or Se) and experimentally observed products from their reaction with Cd(oleate)2.a 
Precursor(s)       

R-E-E-R 

(E = S or Se) 

C-E BDE 

kcal/mol 

E-E BDE 

kcal/mol 

(C-E)-(E-E) 

kcal/mol 

 40 min Product 

morphology 

(1S peak) 

Sizeb / nm 

Allyl-S-S-Allyl 45.71 61.33 -15.62 Nanocrystalsc      

(480 nm) 

9.4 ± 1.3 

Bn-S-S-Bn 48.50 62.45 -13.94 Nanocrystalsc      

(480 nm) 

4.2 ± 0.6 
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Table 1 continued 

tBu-S-S-tBu 

 

52.81 

 

59.39 

 

-6.59 

 

Quantum dotsc      

(430 nm) 

 

2.2 ± 0.2 

iPr-S-S-iPr 55.45 59.69 -4.24 Quantum dotsc      

(450 nm) 

1.8 ± 0.3 

Et-S-S-Et 58.13 59.48 -1.35 Pods/Multipods      

(470 nm) 

Pod length: 10.3 ± 2.8 

Pod width: 5.1 ± 0.6 

Me-S-S-Me 59.03 58.04 +0.99 Tetrapods               

(465 nm) 

Pod length: 19.5 ± 2.9 

Pod width: 5.5 ± 0.5 

Ph-S-S-Ph 69.75 45.65 +24.11 No reaction (n.a.) - 

Bn-S-S-Bn + 

Ph-S-S-Ph (1:1) 

-d - d - d Rods                          

(470 nm) 

Rod length: 11.5 ± 1.5 

Rod width: 4.4 ± 0.5 

tBu-S-S-tBu + 

Ph-S-S-Ph (1:1) 

-d - d - d Tetrapods                          

(455 nm) 

Pod length: 24.1 ± 4.7 

Pod width: 3.5 ± 0.4 

iPr-S-S-iPr + 

Ph-S-S-Ph (1:1) 

-d -d -d Tetrapods                          

(455 nm) 

Pod length: 21.3 ± 4.5 

Pod width: 2.3 ± 0.3 

Et-Se-Se-Ete 52.01 56.41 -4.40 Nanocrystalsc                         

(670 nm) 

6.6 ± 0.6 

Me-Se-Se-Mef 53.76 51.94 +1.82 Multipod clusters                          

(685 nm) 

65.7 ± 13.1 

Ph-Se-Se-Ph 64.44 43.63 +20.80 Quantum dotsc                          

(550 nm) 

3.5 ± 0.5 

aConditions: 0.40 mol Cd(oleate)2, 1.1 equiv. R-E-E-R, 20 equiv. oleic acid, 20 equiv. oleylamine, 4.6 mL ODE, 

250 °C, 40 min (except eEt-Se-Se-Et, 10 min, fMe-Se-Se-Me, 5 min). bAverage sizes (50-100 particles) ± one 

standard deviation. cQuantum dots have average diameters smaller than the Bohr radius reported for CdS (2.5-3.0 

nm) or CdSe (5.4 nm).64-66 dNot applicable (used a mixture of two precursors, see first column). 

 C-E and E-E BDEs: Comparison to prior experimental and computational data. In terms 

of absolute value, our computational results appear to underestimate the experimentally 

measured values reported previously for disubstituted dichalcogenides, particularly in the case of 

E-E BDEs. For example, laser photofragmentation time-of-flight mass spectrometric studies of 

Me-S-S-Me, •S-S-Me, and •S-Me yielded at 0 K a C-S BDE of 55.0 kcal/mol and a S-S BDE of 

72.4 kcal/mol at 0 K,52 compared to our calculated values of 59.03 kcal/mol and 58.04 kcal/mol, 
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respectively (Table 1). This discrepancy could be due to either computational or experimental 

error. In terms of the trends observed, our computational results are in agreement with those 

observed experimentally. E-E BDEs measured experimentally are generally quoted in the range 

51-72 kcal/mol;53 those derived from calorimetry are 66.1 kcal/mol for Et-S-S-Et, 65.2 kcal/mol 

for Me-S-S-Me, and 51.2 kcal/mol for Ph-S-S-Ph,54-58 compared to our calculated values of 

59.48 kcal/mol, 58.04 kcal/mol, and 45.65 kcal/mol, respectively (Table 1). Our computational 

results compare well with previous calculations reported for disubstituted dichalcogenide 

compounds. Early computational references on C-S and S-S BDEs used a complete basis set 

approach instead of DFT.59 High-level ab initio approaches using G3, G3B3, CBS-Q, CBS-4M, 

CCSD(T), and ROMP2 were applied to S-S BDEs.60 A limited DFT study showed the BMK 

functional provided accuracy close to composite methods, with S-S BDEs of 64.5 kcal/mol for 

tBu-S-S-tBu, 63.9 kcal/mol for iPr-S-S-iPr, 63.8 kcal/mol for Et-S-S-Et, 62.9 kcal/mol for Me-S-

S-Me, and 48.3 kcal/mol for Ph-S-S-Ph.61 These values and trends roughly agree (within 2-5 

kcal/mol) with our computational results of 59.39 kcal/mol, 59.69 kcal/mol, 59.48 kcal/mol, 

58.04 kcal/mol, and 45.65 kcal/mol, respectively. Further, all previous computations also find the 

S-S bond in Ph-S-S-Ph to be significantly weaker than its C-S bond and the S-S bonds of other 

disulfides. DFT with different functionals other than BMK gave a Se-Se BDE of 51.8 kcal/mol 

for Me-Se-Se-Me, which compares well with our value of 51.94 kcal/mol.62,63 

 Assessing dichalcogenide precursor reactivity from C-S BDEs. As shown in Table 1 and 

Figure 2, C-S bond energies progressively increase across the following series: Allyl-S-S-Allyl < 

Bn-S-S-Bn < tBu-S-S-tBu < iPr-S-S-iPr < Et-S-S-Et < Me-S-S-Me < Ph-S-S-Ph. In contrast, S-S 

bond energies remain roughly similar along most of the same series from Allyl-S-S-Allyl 

through Me-S-S-Me, but significantly drop (by about one third) for Ph-S-S-Ph. These trends 
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greatly help understand our experimental observations. Both of the C-S bonds as well as the S-S 

bond must break in order to form nanocrystalline CdS. Because the strength of the S-S bond 

remains fairly constant among most disulfides, the key factor that mainly determines the overall 

chemical reactivity of disulfide precursors is the strength of the C-S bond (Figure 2, Chart 1). 

 

 
 
Figure 2. Bond dissociation (homolysis) energies (BDEs) calculated using density functional theory 

(DFT) with the Boese-Martin Kinetics (BMK) functional in GAMESS. Full computational results, 

including bond distances and dihedral angles are available in the Appendix. 
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Chart 1 
 

 To illustrate, Allyl-S-S-Allyl and Bn-S-S-Bn have the weakest C-S bonds (45.71 kcal/mol 

and 48.50 kcal/mol, respectively) and are therefore the most reactive precursors in the series 

(Chart 1); they quickly (< 5 min) react with Cd(oleate)2 to form large, non-quantum confined 

spherical CdS nanocrystals (Figure 1a, b). After 40 min, Allyl-S-S-Allyl and Bn-S-S-Bn lead to 

CdS particle sizes of 9.4 nm ± 1.3 nm and 4.2 nm ± 0.6 nm respectively. In comparison, tBu-S-

S-tBu and iPr-S-S-iPr have intermediate C-S bond strengths (52.81 kcal/mol and 55.45 kcal/mol, 

respectively) and are more mildly reactive; they react less quickly (5-40 min) with Cd(oleate)2 to 

form small, quantum confined spherical CdS nanocrystals (Figure 1c, d). After 40 min, tBu-S-S-

tBu and iPr-S-S-iPr lead to CdS particle sizes of 2.2 nm ± 0.2 nm and 1.8 nm ± 0.3 nm, 

respectively. For reference, the Bohr radius reported for CdS is between 2.5-3.0 nm.64-66 

 Further decreasing the C-S bond strength and with it, chemical precursor reactivity, 

results in slower reaction and the selective formation of anisotropic structures. Et-S-S-Et and 

Me-S-S-Me have strong C-S bonds (58.13 kcal/mol and 59.03 kcal/mol, respectively) and are 

only weakly reactive; they react very slowly (20-40 min) and selectively with Cd(oleate)2 to 

grow multipod and tetrapod structures (Figure 1e, f). After 40 min, Et-S-S-Et and Me-S-S-Me 
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lead to CdS pods and tetrapods, respectively. For Et-S-S-Et, the average pod length and diameter 

are 10.3 ± 2.8 nm and 5.1 ± 0.6 nm, respectively. For Me-S-S-Me, the average pod length and 

diameter are 19.5 ± 2.9 nm and 5.5 ± 0.5 nm, respectively. At the end of the series and in stark 

contrast to all other dichalcogenides we tested, Ph-S-S-Ph has the strongest C-S bond (69.75 

kcal/mol) and is unreactive (Chart 1); Ph-S-S-Ph alone (by itself) does not react with Cd(oleate)2 

under identical conditions to those used above for the other precursors (Figure 1). 

 Compared to the rest of the dichalcogenide precursors we used, Ph-S-S-Ph is different not 

only because it contains the strongest C-S bond (69.75 kcal/mol), but also because it contains the 

weakest S-S bond (45.65 kcal/mol). On the contrary, for most of the other dichalcogenides in the 

series, the calculated S-S bond is either stronger than or as strong as the calculated C-S bonds 

(Table 1, Figure 2). Examination of the highest occupied (HOMO) and lowest unoccupied 

(LUMO) molecular orbital diagrams of diphenyl disulfide (Ph-S-S-Ph) reveals a strong overlap 

between the π orbital on the chalcogen atoms and the π orbital of the adjacent phenyl carbon 

(Figure 3). This π-π overlap lends partial double bond character to the C-S bond, increasing the 

C-S bond strength (making it harder to break), and decreasing the C-S bond length (C-S 1.8085 

Å for Ph-S-S-Ph vs. C-S 1.8494-1.8721 Å for other disulfides, see the Appendix). Other dialkyl 

dichalcogenides, such as diethyl disulfide (Et-S-S-Et) do not possess such overlap (Figure 3). 

Based on these differences, we hypothesized that the formation of anisotropic particles may arise 

from the relative ease (and rate) of C-S vs. S-S bond breaking. 
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Figure 3. Lowest unoccupied (LUMO, top) and highest occupied (HOMO, bottom) molecular orbitals for 

Et-S-S-Et (a, b) and Ph-S-S-Ph (c, d) plotted with a contour value of 0.02. Calculated using density 

functional theory (DFT) with the Boese-Martin Kinetics (BMK) functional in GAMESS. Full 

computational results, including bond distances and dihedral angles are available in the Appendix. 

 

 Understanding the formation of anisotropic structures: Molecular origin of nanoscale 

anisotropy. For Allyl-S-S-Allyl, Bn-S-S-Bn, tBu-S-S-tBu and iPr-S-S-iPr, the C-S bonds are 

weaker than the S-S bond by at least 5 kcal/mol or more (Table 1, Figure 2); therefore, by the 

time the C-S bond breaks in these precursors, the S-S bond has already broken, resulting in the 

release of S equivalents that can proceed to react with Cd(oleate)2 to form spheroidal (0D) 

nanocrystals. In contrast, for Et-S-S-Et and Me-S-S-Me the C-S and S-S bonds are very similar 

in energy (only ca. 1.35-0.99 kcal/mol apart) (Table 1, Figure 2); therefore, the C-S and S-S 

bonds break with similar ease and at roughly similar or comparable rates, resulting in the 

concomitant release of both S, and R-S• radicals (Scheme 2). We expect thiol radicals of the 

form R-S• to act as excellent ligands due to their high affinity for soft cations and metal surfaces, 

for example by binding at so called “dangling bonds” or “surface traps”.67 The formation of 

radicals in these reactions is feasible given the high temperature (250 °C), long time (40 min) 
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and non-polar medium (octadecene and long chain surfactants) used here. Such harsh conditions 

are normally conducive to bond homolysis and radical chemistry. In situ generated R-S• radicals 

can act as capping ligands on the CdS surface, passivating the nanocrystals against further 

growth. Stabilizing and increasing the solution-phase lifetime of small, high-energy surface CdS 

nuclei could lead slower and more selective nanocrystal growth, resulting in the formation of 

anisotropic structures such as the pods and tetrapods observed with Et-S-S-Et and Me-S-S-Me 

(Figure 1e, f). In fact, in the presence of excess O2, a naturally occurring diradical, Cd(oleate)2 

and NaHSe react very slowly and selectively to produce anisotropic CdSe structures 

(nanowires).68 

 The above situation reverses for the Ph-S-S-Ph precursor, where the calculated C-S bond 

is much stronger than the calculated S-S bond by 24.11 kcal/mol (Table 1, Figure 2b). This 

explains the apparent lack of reactivity of Ph-S-S-Ph: The S-S bond breaks very easily but the C-

S bond does not, resulting in the facile release of R-S• radicals but not of S (Scheme 2). In fact, 

even though by itself it does not appear to react with Cd(oleate)2, we reasoned that Ph-S-S-Ph 

should be extremely efficient at generating R-S• radicals. Because such thiol radicals can serve 

as surface-passivating ligands, we hypothesized that repeating CdS forming reactions using a 

mixture of the apparently ‘unreactive’ Ph-S-S-Ph with a reactive dichalcogenide such as tBu-S-

S-tBu or iPr-S-S-iPr should induce the formation of anisotropic structures. As noted above, 

reacting Cd(oleate)2 with tBu-S-S-tBu or iPr-S-S-iPr normally results in CdS dots (Figure 1b, c). 

However, mixing any of these two precursors with Ph-S-S-Ph could mimic the situation where a 

very slowly reacting (and selective) precursor such as Et-S-S-Et or Me-S-S-Me is used; more 

specifically, tBu-S-S-tBu or iPr-S-S-iPr would serve as a source of S, while Ph-S-S-Ph would 

serve as a source of surface-stabilizing R-S• radicals. 
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 Inducing anisotropy: Testing the role of in situ generated thiol radicals. Figure 4 shows 

representative data confirming this prediction: While Ph-S-S-Ph alone is unreactive against 

Cd(oleate)2, and Bn-S-S-Bn alone leads to quick formation of CdS nanocrystals (Figure 4a, b), a 

1:1 mixture of Bn-S-S-Bn and Ph-S-S-Ph leads to the sole, highly-selective formation of CdS 

rods (Figure 4c). In turn, while tBu-S-S-tBu alone leads to quick CdS dot formation (Figure 4d), 

a 1:1 mixture of tBu-S-S-tBu and Ph-S-S-Ph leads to highly selective formation of CdS tetrapods 

(Figure 4e). Similarly, while iPr-S-S-iPr alone leads to quick CdS dot formation (Figure 4f), a 

1:1 mixture of iPr-S-S-iPr and Ph-S-S-Ph leads to highly selective formation of CdS tetrapods. 

These reactions cleanly and reproducibly produce anisotropic CdS structures (only rods or 

tetrapods), without the need for any of the widespread and commonly used size- and/or shape-

selective purification protocols. In addition, pod branching depends on the ratio of precursors 

used. 

 
 

Figure 4. Under identical conditions (0.40 mol Cd(oleate)2, 1.1 equiv. R-S-S-R, 20 equiv. oleic acid, 20 



www.manaraa.com

55 

 

equiv. oleylamine, 4.6 mL ODE, 250 °C): Ph-S-S-Ph is unreactive (a); Bn-S-S-Bn produces CdS dots 

while a 1:1 mixture of Bn-S-S-Bn and Ph-S-S-Ph produces CdS rods (c); tBu-S-S-tBu produces CdS dots 

(d) while a 1:1 mixture of tBu-S-S-tBu and Ph-S-S-Ph produces CdS tetrapods (e); iPr-S-S-iPr produces 

CdS dots (f) while a 1:1 mixture of iPr-S-S-iPr and Ph-S-S-Ph produces CdS tetrapods (g). 

 

 These results strongly support, and are consistent with our hypothesis above that in situ 

generated thiol radicals (R-S• radicals) serve as efficient surface-passivating ligands, increasing 

the lifetime of small CdS nuclei long enough to allow for slow (and selective) heterogeneous 

(epitaxial) growth of new CdS (pods). Dichalcogenide precursors with intermediate S-S and C-S 

bond strengths such as Et-S-S-Et and Me-S-S-Me are good at generating R-S• radicals, and they 

are also mild (slowly releasing) sources of S; therefore, these precursors are ideal for selective 

anisotropic growth (Figure 1e, f).  With a much weaker S-S bond, the ability to generate R-S• 

radicals is even higher for Ph-S-S-Ph, but this precursor has a prohibitively strong C-S bond and 

is unable to serve as a source of S (Figure 1g and 4a). However, when mixed with other 

precursors that are good S sources such as Bn-S-S-Bn, tBu-S-S-tBu or iPr-S-S-iPr, Ph-S-S-Ph 

allows the generation of anisotropic structures such as rods and tetrapods where usually only dots 

would form (Figure 4c, e, g). In these mixed precursor experiments, the degree of anisotropy is a 

direct result of an exquisite interplay between the ability of Ph-S-S-Ph to give off surface-

stabilizing R-S• radicals, and the chemical reactivity of a second precursor (namely, the latter’s 

ability to give off S as measured by its relative C-S BDE). 

 Other effects of dichalcogenide reactivity: Understanding nucleation, growth and 

ripening. Our calculations and experimental observations also help understand the relative rates 

of nucleation, growth and ripening of CdS nanocrystals made with different dichalcogenides 

(Figure 5). As judged from the position of the first 1S absorption peak (Figure 5a),69-72 Bn-S-S-

Bn (C-S BDE 48.50 kcal/mol) reacts with Cd(oleate)2 to form larger CdS nanocrystals than tBu-

S-S-tBu (C-S BDE 52.81 kcal/mol) or iPr-S-S-iPr (C-S BDE 55.45 kcal/mol). Interestingly, 
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increasing the initial dichalcogenide concentration also results in an increase in the size of the 

CdS nanocrystals (iPr-S-S-iPr (2) vs. iPr-S-S-iPr in Figure 5a). These observations suggest that 

the rate of nanocrystal growth (heterogeneous nucleation of new CdS material epitaxially on 

existing CdS particles)73 is directly dependent on dichalcogenide reactivity and concentration. 

Dividing the CdS particle size (derived from the position of the 1S peak) by its size-specific 

absorption coefficient or “cross section” () is proportional to the number of CdS particles 

present in the reaction at any given time (Figure 5b).68-71 Interestingly, reaction of Cd(oleate)2 

with Bn-S-S-Bn (C-S BDE 48.50 kcal/mol) initially forms ca. twice as many initial nuclei as 

tBu-S-S-tBu (C-S BDE 52.81 kcal/mol) and ca. seven times as many nuclei as iPr-S-S-iPr (C-S 

BDE 55.45 kcal/mol) (short reaction times ≤ 5 min, Figure 5b). However, increasing the initial 

dichalcogenide concentration does not affect the number of initially formed CdS nuclei (iPr-S-S-

iPr (2) vs. iPr-S-S-iPr in Figure 5b). Therefore, the rate of nanocrystal nucleation 

(homogeneous nucleation of new CdS nuclei) is extremely sensitive to, and directly dependent 

on, the reactivity of the dichalcogenide precursor used, but not its concentration. Once the initial 

nucleation event has occurred, the change in the number of CdS particles over time (i.e., 

ripening) does not appear to be directly affected by precursor reactivity, but rather appears to be 

a simple consequence of the initial CdS particle size (Figure 5b). 
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Figure 5. Time evolution of particle size (growth, a) and number of nuclei and ripening (b) of CdS 

nanocrystals produced with different dialkyl dichalcogenide precursors under similar reaction conditions 

(0.40 mol Cd(oleate)2, 1.1 equiv. R-S-S-R, 20 equiv. oleic acid, 20 equiv. oleylamine, 4.6 mL ODE, 250 

°C). 

 

 Comparing diselenide with disulfide precursors. The diselenide precursors reacted more 

quickly than the analogous disulfide precursors. We previously observed similar behavior in 

trialkylphosphine-chalcogenide precursors (R3P=E, E = Se vs. S),14-16 and we attribute this 

difference to the fact that Se forms weaker and longer (C-E and E-E) bonds compared to S (see 

the Appendix). Et-Se-Se-Et has weak C-Se bonds (52.01 kcal/mol) and reacts quickly with 

Cd(oleate)2 to form CdSe quantum dots in < 2 min; these become non-quantum confined CdSe 

nanocrystals with a particle size of 6.6 nm ± 0.6 nm after 10 min (Figure 6a). For reference, the 
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Bohr radius reported for CdSe is ca. 5.4 nm.42 Me-Se-Se-Me has stronger C-Se bonds (53.76 

kcal/mol) and reacts more slowly and selectively with Cd(oleate)2 to form CdSe multipods; these 

show significant clustering after 5 min (Figure 6b). Ph-Se-Se-Ph has even stronger C-Se bonds 

(64.44 kcal/mol) and barely reacts with Cd(oleate)2 to form very small CdSe quantum dots 

(Figure 6c). We attribute the difference between Ph-S-S-Ph (unreactive) and Ph-Se-Se-Ph 

(marginally reactive) to the difference in C-E bond dissociation energies between these two 

precursors (C-S BDE 69.75 kcal/mol in Ph-S-S-Ph vs. C-Se BDE 64.44 kcal/mol in Ph-Se-Se-

Ph) (Table 1). Thus, although more reactive, the diselenide (R-Se-Se-R) precursors show similar 

reactivity patterns as those observed for the disulfide (R-S-S-R) precursors above. 

 

Figure 6. Representative TEM images (left panel) and time evolution of UV-Vis absorption spectra (right 

panel) of CdS nanocrystals obtained with (a) diethyl (10 min), (b) dimethyl (5 min), and (c) diphenyl 
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disulfide (40 min) precursors under identical conditions (0.40 mol Cd(oleate)2, 1.1 equiv. R-Se-Se-R, 20 

equiv. oleic acid, 20 equiv. oleylamine, 4.6 mL ODE, 250 °C). 

 

Conclusions 

 By studying a variety of commercially available dichalcogenides and the outcome of their 

solution-phase reaction with a cadmium-oleate complex under identical conditions, we have 

demonstrated that the formation and degree of anisotropy for different nanocrystalline products 

can be traced back to the precise molecular structure, bonding energetics, and chemical reactivity 

of the different dichalcogenides used. Using DFT, we showed that the main factor that 

determines overall dichalcogenide precursor reactivity is the carbon-chalcogen (C-S or C-Se) 

bond dissociation energy, while the chalcogen-chalcogen (S-S or Se-Se) bond dissociation 

energy remains more or less constant across most of dichalcogenides (disulfides or diselenides). 

The only exception to this trend are diphenyl dichalcogenides, which exhibit the weakest 

chalcogen-chalcogen bonds and the strongest carbon-chalcogen bonds due to strong π orbital 

interactions between the first carbon atom in the phenyl ring and the adjacent chalcogen atom. 

The presence of this strong C-S bonding interaction causes Ph-S-S-Ph to appear unreactive when 

used alone. Conversely, Allyl-S-S-Allyl has the weakest C-S bond, and reacts quickly to produce 

large aggregated CdS nanocrystals. Similar trends in bond dissociation energies and reactivity 

hold for the diselenide precursors, although their longer and weaker bonds lead to faster 

reactivity and more aggregated particles compared to disulfide precursors. 

 To understand the formation of anisotropic structures from disulfides containing roughly 

equal C-S and S-S bond strengths (Et-S-S-Et or Me-S-S-Me), we carried out reactions employing 

1:1 mixtures of a thiol radical source (Ph-S-S-Ph) and a sulfur monomer source (Bn-S-S-Bn, 

tBu-S-S-tBu, or iPr-S-S-iPr). Ph-S-S-Ph by itself yielded no nanocrystalline products and the 

sulfur sources alone yielded only spherical nanocrystals. However the mixed precursor 
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experiments resulted in the exclusive formation of anisotropic structures (rods or tetrapods). Our 

present hypothesis is that the disulfide bond of Ph-S-S-Ph homolyzes to produce PhS• radicals 

which passivate and stabilize small zinc blende CdS nuclei. The cadmium and the second sulfur 

(Bn-S-S-Bn, tBu-S-S-tBu, or iPr-S-S-iPr) precursors then slowly react to selectively grow 

wurtzite arms on the {111} facets of the zinc blende cores. Our computations shed light on the 

relative rates of nucleation, growth and ripening of CdS nanocrystals observed experimentally. 

The rates of CdS nanocrystal nucleation and growth are directly dependent on dichalcogenide 

chemical reactivity, or inversely proportional to C-S bond strength. Increasing the initial 

dichalcogenide concentration increases CdS nanocrystal size, but does not affect the number of 

CdS particles already present after the initial nucleation stage. This implies that the observed 

sizes and morphology are not a function of precursor concentration, but only its characteristic 

reactivity. By applying our understanding the chemistry of precursors, we may begin to 

rationalize and predict desirable nanocrystalline properties such as morphology, composition and 

optoelectronic properties. This “bottom-up” approach to controllable and predictable nanocrystal 

synthesis allows for the preparation of a diverse array of morphologies based on fundamental, 

tangible and measurable molecular properties such as bond energies. We believe this and similar 

efforts will lead to the reliable syntheses of colloidal nanomaterials for customized applications. 
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Appendix of supporting information 

Table S1. Results of DFT calculations on dialkyl dichalcogenide bond energies and structural parameters. 
Precursor(s)           

R-E-E-R 

C-E BDE 

(kcal/mol) 

E-E BDE 

(kcal/mol) 

(C-E)-(E-E) 

(kcal/mol) 

C-E 

bond 

length 

(Å) 

E-E bond 

length 

(Å) 

C-E-E 

angle 

(deg) 

C-E-E-C 

dihedral 

angle (deg) 

 Disulfides (R-S-S-R) 

Allyl-S-S-Allyl 45.71 61.33 -15.62 1.8721 2.0926 102.75 89.28 

Bn-S-S-Bn 48.50 62.45 -13.94 1.8732 2.0925 102.28 87.65 

tBu-S-S-tBu 52.81 59.39 -6.59 1.8900 2.0961 105.68 110.88 

iPr-S-S-iPr 55.45 59.69 -4.24 1.8744 2.0968 104.43 111.51 

Et-S-S-Et 58.13 59.48 -1.35 1.8606 2.0912 102.75 86.37 

Me-S-S-Me 59.03 58.04 0.99 1.8494 2.0930 102.43 84.93 

Ph-S-S-Ph 69.75 45.65 24.11 1.8085 2.1144 103.44 83.15 

 Diselenides (R-Se-Se-R) 

 

Allyl-Se-Se-

Allyl 

40.37 52.82 -12.45 1.9897 2.3359 101.31 91.24 

Bn-Se-Se-Bn 43.26 54.43 -11.16 1.9878 2.3346 100.15 84.67 

tBu-Se-Se-tBu 48.14 53.96 -5.83 1.9891 2.3380 103.75 107.52 

iPr-Se-Se-iPr 49.57 53.49 -3.92 2.0073 2.3364 102.44 107.02 

Et-Se-Se-Et 52.01 56.41 -4.40 1.9762 2.3341 100.10 88.49 

Me-Se-Se-Me 53.76 51.94 1.82 1.9641 2.3351 100.26 86.82 

Ph-Se-Se-Ph 64.44 43.63 20.80 1.9238 2.3582 100.97 82.74 

 

Additional computational details 

 

 These computations consider the homolytic dissociation of disulfides and diselenides to 

give radical species, as shown in scheme S1. This method is consistent with the definition of 

bond dissociation energy, as well as previously reported calculations.1 That said, in some cases it 

is preferable to consider isodesmic2 (similar bond types broken and formed) or isogyric3 

(products and reactants have the same spin multiplicity) reactions in order to correct for errors 
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arising due to the change in spin multiplicity from reactants to products. In this case, the spin 

multiplicity changes from singlet for the reactants to doublet for the product radicals. 

 

Scheme S1. Bond homolysis reactions for (a) E-E homolysis and (b) R-E homolysis. 

 

The accuracy of the calculations is also dependent on the basis sets employed. The 

highest precision possible is considered to be the complete basis set (CBS) limit, where the basis 

set for each atom is composed of an infinite set of functions. This approach works well for 

simple disulfides4 but requires vast computational resources for larger molecules and atoms with 

increasing numbers of electrons. This study uses the largest basis set that completed 

computations in a reasonable timeframe – 6-311G(d,p). 

Computational methods other than DFT also provide higher precision at added 

computational cost. Most notable is Gaussian-3, a composite method for thermodynamic 

calculations. In the case of disulfide bond energies, certain DFT functionals such as BMK can 

provide similar accuracy with lower computational cost,1 which is why this method was used in 

this study. 

The computations described here consider gas phase molecules in vacuum. Solvent 

effects are known to influence bond dissociation energies.5 As a first approximation, solvation 

effects could be modeled using PCM, the polarizable continuum model.6 More accurate 

modeling of solvation effects would require either explicit modeling of radical-solvent molecule 

interaction or considering a statistical mechanics model. 
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CHAPTER 4 

 

ASSESSING PHOSPHINE-CHALCOGEN BOND STRENGTHS FROM 

CALCULATIONS 

Samuel R. Alvarado, Ian Shortt, Hua-Jun Fan, Javier Vela 

 

Abstract 

Phosphine chalcogenides are useful reagents for chalcogen atom transfer reactions and 

nanocrystal syntheses. Understanding the strength and electronic structure of these bonds is key 

to optimizing their reactivity, but a limited number of experimental and computational studies 

probe these issues. Using density functional theory (DFT), we computationally screen multiple 

series of phosphine chalcogenide molecules with a variety of moieties attached to the phosphorus 

to control the strength of the phosphorus-chalcogen bond. DFT provides valuable data on these 

compounds including homolytic bond dissociation energies, bond order, Löwdin charge on 

phosphorus and chalcogen atoms, and molecular geometries. Experimentally monitoring the 31P 

and 77Se NMR chemical shifts and published Hammet constants provide the estimation of the 

relative magnitude of electronic shielding around these nuclei and confirms the computational 

results. 

 

Introduction 

 Tertiary (trisubstituted) phosphine chalcogenides (R3PE, where R = alkyl, aryl, amid, 

alkoxyl, and E = S, Se, Te) are molecular compounds useful in a variety of chemical 

transformations including chalcogen atom transfer reactions and chalcogenide nanocrystal 

synthesis. In comparison to the unsupported elemental chalcogens, the substituents (R) on the 
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phosphine chalcogenide can be used to fine-tune the solubility and reactivity of the phosphorus-

chalcogen (PE) moiety in these compounds.1 

 In atom transfer reactions, phosphine chalcogenides donate sulfur, selenium or tellurium 

in a bimolecular fashion.2,3 Current evidence indicates that the rate of atom transfer is dependent 

on the relative basicity of the pnictogen center (P, As or Sb). This transfer can occur between a 

phosphine chalcogenide and another P, As or Sb atom.4 Computations suggest that the transfer of 

S and Se atom among phosphines proceeds through chalcogen-philic attack by the pnictide 

nucleophile.5 Phosphine sulfide-supported palladium complexes6 as well as Cu(I) and Zn(II) 

catalysts7 mediate this transformation. A synthetic application of this strategy is Se atom transfer 

from triphenylphosphine selenide to H-phosphonate diesters.8 Similarly, tricyclohexylphosphine 

selenide and telluride donate a chalcogen atom to N-heterocyclic carbenes.9 

 Because of their desirable reactivity and solubility in low volatility (high boiling point) 

solvents, trialkyl phosphine chalcogenides have been popular chalcogen sources in nanocrystal 

preparations since the early 1990’s.10 Cleavage of the P—E bond is thought to occur by either 

redox chalcogen (E0) atom transfer or acid-base chalcogenide (E2-) transfer mechanisms.11 The 

latter mechanism proceeds through a phosphine chalcogenide-metal activated complex, which 

decomposes into metal chalcogenide nuclei.12 The mechanism of R3PE decomposition has been 

studied for the synthesis of CdSe,13–15 PbSe16, 17 and ZnSe18 nanocrystals. The electron donating 

and withdrawing effects of different phosphorous substituents have an effect on the mechanism 

of InP formation from triarylsilylphosphines.19 

 Studies on the electronic structure of R3PE compounds and the reactive P—E bond are 

key to guiding their use as both atom transfer reagents and nanocrystal synthesis precursors. It is 

well established that heavier chalcogens form significantly weaker and longer bonds with 
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phosphorous. Calorimetric methods and atom transfer reactions have been used to measure the 

strength of P—E bonds experimentally.20 Bond dissociation energies of phosphine sulfides 

spanned a range of 88-98 kcal/mol, while those of phosphine selenides ranged 67-75 kcal/mol.21 

Bonding in trialkyl phoosphine chalcogenides22, 23 has also been studied computationally using 

Density Functional Theory (DFT)24 and Atoms in Molecules (AIM).25 Our group recently used 

DFT to estimate the P—E bond strengths of a selection of phosphine sulfide and selenide 

derivatives that are particularly useful in the preparation of colloidal semiconductor nanocrystals 

(quantum dots and rods).26 

 Here we greatly expand our investigation of P—S and P—Se bond dissociation energies 

(BDEs) using DFT methods. To understand how changing the electron density around the PE 

moiety influences the electronic structure and strength of the P—E bond, we closely examine 

different families of triarylphosphine chalcogenides containing substituents of varying inductive 

effects. We also investigate trialkyl-, and tris-perfluoroalkyl-, and Verkade type, caged-

phosphine chalcogenides.27 We anticipate that the results of this large computational screening 

will be generally applicable to a variety of problems and applications that make use of phosphine 

chalcogenides, including chalcogen atom transfer and nanomaterial synthesis reactions. 

 

Computational and experimental details 

Computations. All calculations were carried out using GAMESS28, 29 (May 2013 version, 

revision 1) with density functional theory (DFT) and the Tao-Perdew-Staroverov-Scuseria 

(TPSS)30, 31 functional. The accuracy of the new generation functional TPSS is known to match 

or exceed almost all prior functionals, including the popular hybrid functional B3LYP.32 TPSS 

reproduces geometric properties at least as precisely as B3LYP, and can recognize relatively 
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weak interactions (such as agostic interactions) while B3LYP significantly underestimates 

them.33 Since hydrogen atoms in the systems we modelled did not play significant roles, we used 

6-311G* basis set34 for all elements. By not applying polarization functions on H atoms far from 

the phosphorous center, the calculations are accelerated considerably without significantly 

degrading computational precision or accuracy.35 All structures were fully optimized and 

Hessian calculations (frequency analyses) were performed to ensure a minimum was achieved 

with zero imaginary vibrational frequencies. Thermodynamic functions, including enthalpies, 

entropies and free energies, were calculated at 298.15 K and 1 atm. Results were visualized with 

MacMolPlt.36 

 Materials. Unless otherwise noted, all chemicals were used as received without further 

purification. Triphenylphosphine (99%) was purchased from Acros; sulfur (99.999%), selenium 

(99.999%), and tris(4-fluorophenyl)phosphine (98%) were purchased from Alfa Aesar; 

tris(pentafluorophenyl)phosphine (98%), tris(4-methoxyphenyl)phosphine (98%), and tris(2,4,6-

trimethoxyphenyl)phosphine (98%) from Strem; toluene (99.9%), xylenes (99.9%) and 

chloroform (99.9%) from Fisher. 

 Characterization. 31P NMR chemical shifts were referenced to 85% phosphoric acid, 

H3PO4 (δ 0 ppm). 77Se NMR spectra were referenced to Ph3PSe/CDCl3 (δ 266.20 ppm vs. Me2Se 

δ 0 ppm).  

 Synthesis. Triphenylphosphine selenide,15 tris(4-fluorophenyl)phosphine sulfide, tris(4-

fluorophenyl)phosphine selenide, tris(2,4,6-trimethoxyphenyl)phosphine sulfide, and tris(2,4,6-

trimethoxyphenyl)phosphine selenide37 were prepared as described previously. 

Tris(pentafluorophenyl)phosphine sulfide was prepared with a modified procedure;38–40 briefly, 

tris(pentafluorophenyl)phosphine (50.3 mg, 0.0945 mmol and sulfur (2.8 mg, 0.0873 mmol) 
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were heated to reflux in xylenes for 4 days. Solvent was removed under vacuum. The crude was 

recrystallized from ethanol to give white needles (29.5 mg, 60.1%). 31P NMR: -8.28 ppm; 19F 

NMR: 131.54 ppm (d, 22.20 Hz), 143.53 ppm (t, 21.07 Hz), 157.84 ppm (t, 20.89 Hz). 

 

Results and discussion 

We have previously shown that bond dissociation energies (BDEs) can be good 

predictors of molecular precursor reactivity and selectivity. Specifically, we have been able to 

use computed BDEs of tertiary phosphine chalcogenides26 and disubstituted dichalcogenides41 to 

predictably fine-tune the composition, aspect ratio (of rods) and morphology (from dots to rods 

to tetrapods) of CdS-CdSe nanocrystals. In the case of tertiary phosphine chalcogenides, ten 

computed BDEs (five sulfides and five selenides) were correlated to experimental 31P (and 77Se 

NMR) data. Experiments showed that the relative rate of (homogeneous) CdE nucleation 

increased more dramatically than the rate of CdE growth (heterogeneous nucleation) with a 

decrease in precursor P—E bond energy (E = S or Se).26 

 In order to generalize this approach, we have used DFT (see Methods) to expand the 

range of computed tertiary phosphine chalcogenide BDEs (Chart 1). For simplicity, we 

categorize the specific chalcogenide compounds in our study into five families based on the type 

of tertiary phosphine that they are derived from: (a) Triaryl phosphines monosubstituted with 

electron donating or withdrawing groups (amino, -NH2; methoxy, -OMe; fluoro, -F; carboxyl, -

CO2H; nitro, -NO2); (b) triaryl phosphines substituted with one, two or three methoxy groups; (c) 

triaryl phosphines substituted with one, two or three fluorines; (d) trialkyl and triperfluoroalkyl 

phosphines; and, (e) caged (Verkade-type) tertiary phosphines (Chart 1).27 In all cases, we 

optimized each compound's geometry, and modelled a homolytic dissociation of the P—E bond 
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by calculating the change in electronic energy after correcting for zero point energy (ΔEZPE), the 

change in enthalpy (ΔH) and the change in Gibbs free energy (ΔG) values corrected to 298.15 K 

for the release of sulfur or selenium atom from the corresponding phosphine chalcogenide (a full 

list of all of our results is available in the Appendix). 

 

Chart 1. Tertiary (trisubstituted) phosphine chalcogenide (R3PE, E = S or Se) compounds studied in this 

work. The compounds in the first column were calculated previously.26 

 

General observations. Figure 1 shows the calculated BDE (ΔH) values for all the 

compounds studied. The heavier phosphine selenides exhibit significantly longer and weaker 
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bonds than the corresponding phosphine sulfides, due to the larger radius of selenium compared 

to sulfur.  Comparing all the compounds we investigated, the P—S bond distance for all 

phosphine sulfides are shorter than the P—Se bond distances. BDEs in the P—S compounds are 

also stronger than those of P—Se compounds. 

 

Figure 1. Calculated P—E bond dissociation enthalpies (ΔH) in tertiary phosphine sulfides (R3PS) and 

selenides (R3PSe). 
 

Bond strength and bond distance. We then examined the correlation between bond 

strength and bond distance in each group of compounds (see above) to more closely investigate 

their relationship. In general, it appears that BDE actually increases with increasing P—E 

distance within a series of P—S or P—Se molecules. BDE increases with P—E distance in each 

family (figures 2a-2e), with some exceptions. In the case of the monosubstituted 

triphenylphosphine chalcogenides (figure 2a), we see a nearly linear increase in BDE across the 
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P—S and P—Se series individually. This trend can also be seen with methoxy substation on the 

phenyl rings (figure 2b), and fluorine substitution on the phenyl rings (figure 2c). Figures 2d and 

2e examine linear alkyl and caged phosphine chalcogenides, respectively. In both cases, bond 

distance increases with bond strength, although not as linearly as in the aromatic phosphine 

chalcogenides.  

 

Figure 2. Plots of calculated ΔH of P—E bond dissociation and calculated P—E distance for (a) 

monosubstituted triarylphosphine chalcogenides, (b) fluorinated triarylphosphine chalcogenides, (c) 

methoxy-substitued triarylphosphine chalcogenides, (d) alkyl and perfluorinated phosphine chalcogenides 

and (e) cage-structured phosphine chalcogenides. 

  

A general trend across each series, within a series of P—S or P—Se compounds, is that 

longer bonds are slightly stronger than shorter ones. While this is unexpected and counter-
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intuitive to the notion that longer bonds are weaker, exceptions to this rule are well-documented 

in both computational and crystallographic studies, especially in compounds of main group 

elements. Examples include covalent compounds of tin42 and its lighter analogues43 as well as S-

F bonds in SF2 dimers.44 A crystallographic study of phosphine adducts of open titanocenes also 

shows an inverse correlation with bond length and strength.45 

 We notice discontinuities in the bond length and bond strength trends in both the 

methoxy- and fluorine-substituted triarylphosphine chalcogenides (figure 2b and 2c). These 

outlying cases are compounds that feature substitution at the 2 position, adjacent to the P—E 

bond. Examples of molecules that feature this substitution are (2-NH2-C6H4)3PE and (2,6-MeO2-

C6H3)3PE. A possible explanation is that p orbitals from the adjacent functional groups may be 

interacting with the P—E bond itself. This interaction could potentially increase the P—E 

distance and weaken the bond disproportionately.  

 In order to further investigate this interaction, we visualized the highest occupied 

molecular orbitals (HOMO) of three moleules at a contour value of 0.01: Ph3PS, (2,6-MeO2-

Ph)3PS and (C6F5)3PS (figures 3a-3c). In the latter two compounds, electron density from the 

neighboring substituents may be interacting with the P—E bond. Thus, while the methoxy 

groups should increase P—E electron density via inductive effects – the reported pKa of (2,4,6-

MeO3-Ph)3P is 11.246 – their steric bulk may cause significant weakening of the P—E bond. The 

calculated average distances of these interactions in (2,6-MeO2-Ph)3PS, (2,4,6-MeO3-Ph)3PS, 

(2,6-MeO2-Ph)3PSe, and (2,4,6-MeO3-Ph)3PSe are 3.15 Å, 3.16 Å, 3.23 Å and 3.24 Å. For 

reference, the van der Waals radii of S, Se and P are 1.80 Å, 1.90 Å and 1.80 Å, respectively.47 

Interestingly, in (C6F5)3PE, one of the three aryl rings in these compounds is rotated nearly 

coplanar with the P—E bond. The distance of the nearest F-E interaction is 3.09 Å in (C6F5)3PS 
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and 3.17 Å in (C6F5)3PSe. The van der Waals radii of F, S and Se are 1.47 Å, 1.80 Å, and 1.90 Å, 

respectively. Interactions between S and F have been observed in crystal structures previously.48, 

49 

 
 

Figure 3. Highest occupied molecular orbitals (HOMO) for (a) Ph3PS, (b) (2,6-MeO2-Ph)3PS and (c) 

(C6F5)3PS. All MOs are visualized at a contour value of 0.01. 

 

 Bond strength and Löwdin charges. To understand why longer bonds are slightly stronger 

within a given family of P—S or P—Se molecules, we examined the partial charge on the 

phosphorous and chalcogen atoms in each compound generated from a Mulliken population 

analysis50–53 based on symmetrically orthogonalized orbitals.54 Mulliken population analysis 

assigns a partial charge charge to each atom in the molecule. The Löwdin analysis improves on 

this method by preventing some physical impossibilities that Mulliken analysis can allow, such 

as calculating excessive charge on an atom, which in some cases could lead to more than two 

electrons sharing a single orbital. 

 Based on Löwdin  analysis of the phosphorus atom in the compounds we studied, in 

general, it appears that the phosphorous in P—Se compounds is more positively charged than the 

phosphorous in analogous P—S compounds (figure 4a-4e). Looking at specific groups of 

compounds, in the monosubstituted (figure 4a), methoxy-substituted (figure 4b) and fluorine-

substituted (figure 4c) triphenylphosphine chalogenides, building up positive charge on P 
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correlates approximately linearly with increasing BDE. The linear alkyl and fluoro alkyl (figure 

4d), and cage-structured (figure 4e) phosphine chalcogenides also show that increased charge on 

phosphorous correlates to a greater BDE. 

 
Figure 4. Plots of the Löwdin charge on phosphorus in (a) monosubstituted arylphosphine chalcogenides, 

(b) fluorinated arylphosphine chalocgenides, (c) methoxy-substituted arylphosphinechalcogenides, (d) 

alkyl and perfluoroalkyl phosphine chalcogenides, and (e) cage-structured phosphine chalcogenides. 

 

Examining the charge on the chalcogen atom we generally see that P—Se compounds 

have more negative charge on the Se atom than the P—S compounds have on the S atom. In the 

monosubstituted triphenyl (figure 5a), methoxy-substituted triphenyl (figure 5b), and fluorine-

substituted (figure 5c) phosphine chalcogenides, increasing negative charge on the S or Se atoms 

leads to an increase in the BDE. We see a similar trend in the trialkyl (figure 5d) and cage-
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structured (figure 5e) phosphine sulfides and selenides. In cases of partial charge on both P and E 

atoms, the large discontinuity in the methoxy- and fluorine-substituted cases is due to 

substitution ortho to the P—E bond, which may be increasing the electron density on the 

chalcogen atom (see possible explanation above and figure 3). Additionally, in the alkyl 

phosphine chalcogenide family (figure 4d and 5d), perfluorinated alkyl compounds exhibit lower 

amounts of charge on both P and E, possibly due to the electronegative fluorines removing 

electron density from these atoms. 

 
 

Figure 5. Plots of the Löwdin charge on phosphorus in (a) monosubstituted arylphosphine chalcogenides, 

(b) fluorinated arylphosphine chalocgenides, (c) methoxy-substituted arylphosphinechalcogenides, (d) 

alkyl and perfluoroalkyl phosphine chalcogenides, and (e) cage-structured phosphine chalcogenides. 
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 In each series it appears that bonds with more negatively charged E atoms and more 

positively charged P atoms are stronger, which implies that bond strength increases with ionic 

character. Thus, we examined possible resonance structures of the P—E bond, which could be 

affected by accumulating charge on the phosphorus or chalcogen atoms (scheme 1). Structure I 

features a double bond between formally neutral atoms and structure II shows a single bond with 

a negatively charged chalcogen and a positively charged phosphorous. Structure III is a mixture 

of the two that contains some partial charge on both the phosphorus and the chalcogen which 

causes it to have a bond order between 1 and 2. Our results suggest that the P—E bond is 

composed of a mixture of covalent and ionic character, with more ionic bonds (greater positive 

partial charge on P and greater negative partial charge on S or Se) are slightly stronger than 

bonds with more covalent character (lower magnitude of partial charge on P, S and Se atoms). 

 

Scheme 1. Three resonance structures of the P—E bond: (I) a formal double bond, (II) a formal single 

bond with a phosphorous cation and a chalcogenide anion, and (III) a mixed structure of approximately 

1.5 bonds. 

 

 Substituent effects. Hammett constants (σm and σp) are a useful parameter for quantifying 

the electron donating or withdrawing character of a substituent on an aromatic ring.55 To see 

inductive effects influenced the strength of the P—E bond in substituted triphenylphosphine 

chalcogenides, we compared ΔH of bond dissociation against published Hammett constants of a 

variety functional groups: –NH2, –OMe, –H, –F, –CO2H, and –F. We considered the effect of 

only one functional group at the ortho or para position on each phenyl ring. In both P—S and 

P—Se compounds, Hammett constants show a linear correlation with BDE. As discussed 

previously, BDEs in the P—Se compounds are lower than those of the P—S compounds. 
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 The 4-substituted triphenylphosphine chalcogenides (figure 6a) show a linear decrease in 

BDE with increasing Hammett constant; 3-substituted compounds (figure 6b) show a similar 

trend, although with a flatter slope. The smaller correlation here implies that substitution at the 3-

position may have less effect on the strength of the P—E bond. Generally, substituents with 

more positive Hammett constants including –NO2, –CO2H and –F correspond to weaker BDEs 

while negative Hammett constants –NH2 and –OMe appear to give stronger BDEs. 

 

Figure 6. Calculated ΔH of P—E BDE against Hammett constant in (a) 4- and (b) 3-substituted 

triarylphosphine chalcogenides. 

 

 Based on the simplicity and usefulness of the Hammett constant in describing BDE in 

these compounds, we also investigated whether it is a useful tool in describing the partial charge 

(Löwdin charge) on phosphorus and chalcogen atoms (figures 7a-7d). As described previously, 

positive Löwdin charge on the P atom is greater for phosphine selenides than phosphine sulfides, 

while negative Löwdin charge is greater on the Se atom than the S atom. Substitution at the 4-
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position (figures 7a and 7b) appears to have a greater effect on the partial charge of both the P 

and E atoms than substitution at the 3-position (figures 7c and 7d). This trend is visible in both 

P—S and P—Se bonds. We see that the Löwdin charge on P slightly decreases with increasing 

Hammett constant across a P—S or P—Se series in both 4-sbustituted (figure 7a) and 3-

substituted (figure 7c) compounds. On the other hand, we notice that negative Löwdin charge 

decreases with increasing Hammett constant across a P—S or P—Se series in the 4-substituted 

(figure 7b) and 3-substituted (figure 7d) compounds. 

Figure 7. Löwdin charge on (a) phosphorus and (b) chalcogen in 4-substituted phosphine chalcogenides 

as well as (c) phosphorus and (d) chalcogen in 3-substituted phosphine chalcogenides against Hammett 

constants. 

   

 Bond order and substituent constants. As seen above, bonding in the phosphine 

chalcogenides appears to have an ionic character to it. Traditionally, the Lewis diagrams of these 

compounds formally show a phosphorus-chalcogen double bond (see scheme 1) but 

computational24 and experimental studies have shown that this is not necessarily the case. We 

further examined the bond order of the ortho- and para-monosubstituted triphenylphosphine 



www.manaraa.com

83 

 

chalcogenides computed from the Löwdin charges to see how partial charge influences the 

resulting covalent portion of the P—E bond. Bond orders were determined in GAMESS from the 

sum of the density matrices of the atoms in question, as described previously.56–58  

 As may be expected, generally the bond order of the P—Se bond is lower than that of the 

P—S bond, due to the significantly larger radius of the Se atom compared to S. Correlating the 

Hammett constant of the monosubstituted triarylphosphine chalcogenides to the calculated bond 

order (figure 8) shows that substituents with more electron withdrawing character increase the 

bond order relative to Ph3PE while electron donating substituents decrease the bond order. In 

fact, this correlation applies to both substitution at the 4-position (figure 8a) and at the 3-position 

(figure 8b). This agrees with the earlier observation that electron donating groups increase the 

positive charge on P and increase the negative charge on S and Se. 

 

Figure 8. Correlation of Hammett constant and bond order in (a) 4-substituted triarylphosphine 

chalcogenides and (b) 3-substituted triarylphosphine chalcogenides. 
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 The data from all the Hammett constant correlations suggest that monosubstituted 

triphenylphosphine chalcogenides with electron-donating substituents have stronger P—E bonds 

with greater positive charge on P and greater negative charge on E. Based on our earlier evidence 

that longer bonds are slightly stronger in these compounds, it may be that these longer bonds also 

have more ionic character. Many of these compounds exhibit bond orders between 1 and 2, and 

could be described using structure III in scheme 1. 

 Correlating experimental and computational results. We also investigated selected 

triarylphosphine compounds experimentally with 31P and 77Se spectroscopy to estimate the 

relative amount of shielding around each nucleus (see Appendix for complete table of NMR 

chemical shifts). The compounds we monitored by NMR include (2,4,6-MeO3-C6H2)3PE, (4-

MeO-C6H4)3PE, (4-F-C6H4)3PE, and Ph3PE; additionally we add data from compounds we 

studied previously26: (PhO)3PE, (Et2N)3PE, (n-Pr)Ph2PE, (n-Bu)3PE and (n-Octyl)3PE. The effect 

of substituents on P—E bonds has also been investigated in related arylphosphorothionates59 and 

triarylselenophosphates.60 The 31P-77Se coupling constant has been shown to be influenced by 

adjacent substituents.61 

 The scattered values in 31P chemical shift show no clear correlation with BDE in the 

studied phosphine sulfides or phosphine selenides (figure 9). We also checked to see if the 31P-

77Se 1J coupling constant shows any correlation to calculated BDE, but again the scattering of 

these values show little positive or negative correlation in the studied compounds. However, in 

light of our computational results, we have seen that the phosphorus-chalcogen bond strength is 

also subject to the partial charge about the chalcogen (see above). When 77Se chemical shifts are 

plotted against calculated ΔH of bond dissociation (figure 10), a correlation of generally 

downfield-shifted NMR signal with increasing ΔH appears. This implies that as the selenium 
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nucleus becomes more shielded by electron density, the bond strength increases, as inferred from 

our calculations. 

 

Figure 9. 31P NMR chemical shifts and 1J P—Se coupling constants plotted against calculated ΔH of 

bond dissociation. 

 

 
Figure 10. Correlation between 77Se chemical shift and calculated ΔH of bond dissociation. 

 

Conclusions 

We investigated the bond strength and nature of bonding in multiple families of 

phosphine chalcogenide compounds. Generally, within a family, DFT computations show that as 

the P—E bond distance increases, the BDE also increases. This may be due to increasing the 

partial negative charge on the chalcogen atom and increasing the partial positive charge on the 

phosphorus atom. The result is a stronger, slightly longer bond with greater ionic character. 

Monosubstituted triarylphosphine chalcogenides with electron-donating groups and negative 

Hammett constants exhibit stronger bonds while the same class of compound with electron-

withdrawing groups and positive Hammett constants exhibit weaker bonds. This implies that 
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electron-donating groups add electron density to the P—E unit; the more electronegative 

chalcogen atom accepts this electron density and forms a bond of more ionic character compared 

to compounds with electron-withdrawing groups. The result of this is that formal bond orders are 

between 1 and 2. We also show that these computational results can be verified by 77Se NMR 

spectroscopy, which shows that more shielded nuclei with more negative chemical shifts 

correspond to greater BDEs. This suggests that more electron density around the chalcogen atom 

creates a stronger bond with more ionic character. We anticipate that these results will allow for 

the design of new atom transfer and quantum dot synthesis reagents with enhanced reactivity. 
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Appendix of supporting information  

Figure S1. Computed ΔH of P=E bond dissociation for all phosphine chalcogenides in this work.  

 
Figure S2. Lowdin charge on P in all phosphine chalcogenides in this work. 
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Figure S3. Lowdin charge on E in all phosphine chalcogenides in this work. 

 
 

Table S1. Monosubstituted triarylphosphines 

Compound 

P=E 

distance 

(Å) 

R-P=E 

angle (°) 

Mulliken 

charges (P, 

E) (e) 

Bond 

order 

ΔH 

(kcal/mol) 

ΔG 

(kcal/mol) 

ΔE 

(kcal/mol) 

ΔEZPE 

(kcal/

mol) 

Ph3PS 1.973 

113.683 

(113.676,

113.678, 

113.694) 

0.7250,  

-0.3686 
1.769 71.8707 62.4748 74.8487 

73.05

78 

(4-NO2-

C6H4)3PS 
1.965 

113.769 

(113.764

39,113.77

877,113.7

6453) 

0.7167,  

-0.3214 
1.816 68.8309 59.9389 71.2160 

69.75

89 

(3-NO2-

C6H4)3PS 
1.966 

113.807 

(113.838

14,113.79

892,113.7

8364) 

0.7193,  

-0.3334 
1.812 69.8182 60.4142 72.4955 

70.87

02 

(4-NH2-

C6H4)3PS 
1.980 

113.360 

(113.350

76,113.35

287,113.3

7497) 

0.7309, 

 -0.3971 
1.734 74.3988 65.1728 77.4419 

79.01

14 

(3-NH2-

C6H4)3PS 
1.973 

113.789 

(113.706

91,113.91

286,113.7

477) 

0.7251,  

-0.3705 
1.782 71.8516 62.4686 74.7051 

75.58

38 

(2-NH2-

C6H4)3PS 
2.028 

112.108 

(112.119

32,112.05

105,112.1

544) 

0.7480,  

-0.4095 
1.619 77.7584 66.4784 81.2654 

72.99

76 

(4-CO2H- 

C6H4)3PS 
1.969 

113.858 

(113.844

42,113.85

0.7180,  

-0.3436 
1.795 70.0502 60.8502 72.7154 

71.10

02 
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445,113.8

7524) 

(3-CO2H- 

C6H4)3PS 
1.971 

113.605 

(113.462

71,113.62

96,113.72

281) 

0.7233,  

-0.3575 
1.771 71.5703 61.9003 74.3478 

72.66

23 

(4-MeO-

C6H4)3PS 
1.977 

113.518 

(113.511

42,113.53

325,113.5

1064) 

0.7301,  

-0.3835 
1.763 73.3056 64.0256 76.2638 

74.49

86 

(3-MeO-

C6H4)3PS 
1.972 

113.866 

(113.858

73,113.86

483,113.8

7372) 

0.7292,  

-0.3658 
1.768 71.8391 62.0511 74.7920 

73.00

11 

(4-F-C6H4)3PS 1.972 

113.575 

(113.579

53,113.56

953,113.5

7548) 

0.7251,  

-0.3617 
1.777 71.6830 62.1060 74.6623 

72.86

70 

(3-F-C6H4)3PS 1.968 

113.763 

(113.767

77,113.75

524,113.7

6656) 

0.7236,  

-0.3463 
1.787 70.8257 61.1857 73.6762 

71.94

37 

Ph3PSe 2.129 

113.669 

(113.665

19,113.64

069,113.7

0113) 

0.8655,  

-0.4687 
1.457 59.6226 50.1886 61.9164 

60.57

16 

(4-NO2-

C6H4)3=Se 
2.119 

113.777 

(113.780

23,113.80

853,113.7

4126) 

0.8560,  

-0.4132 
1.501 56.5005 47.5225 58.1317 

57.16

15 

(3-NO2-

C6H4)3PSe 
2.120 

113.807 

(113.800

37,113.78

882,113.8

3073) 

0.8589,  

-0.4277 
1.496 57.4948 48.0208 59.4307 

58.28

48 

(4-NH2-

C6H4)3PSe 
2.138 

113.322 

(113.337

65,113.32

968,113.2

9916) 

0.8699,  

-0.4965 
1.419 62.4113 53.2053 64.6545 

66.79

67 

(3-NH2-

C6H4)3PSe 
2.129 

113.731 

(113.652

85,113.84

047,113.6

9935) 

0.8626,  

-0.4686 
1.463 59.2717 49.7277 61.1795 

63.34

93 

(2-NH2-

C6H4)3PSe 
2.193 

111.903 

(111.929

17,111.90

585,111.8

7424) 

0.8809,  

-0.5040 
1.339 65.8627 54.6208 68.4936 

60.08

07 

(4-CO2H- 2.133 113.871 0.8566,  1.481 57.7497 48.5087 59.7126 58.55
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C6H4)3PSe (113.856

01,113.87

415,113.8

837) 

-0.4383 67 

(3-CO2H-

C6H4)3PSe 
2.127 

113.640 

(113.498

5,113.648

61,113.77

359) 

0.8623,  

-0.4539 
1.462 59.2978 49.9008 61.3244 

60.13

28 

(4-MeO-

C6H4)3PSe 
2.170 

113.470 

(113.465

81,113.45

721,113.4

8567) 

0.8714,  

-0.4846 
1.444 61.1216 51.8396 63.3971 

62.08

06 

(3-MeO-

C6H4)3PSe 
2.174 

113.894 

(113.897

34,113.87

133,113.9

1429) 

0.8694,  

-0.4669 
1.457 59.7621 50.3611 61.7954 

60.47

51 

(4-F-C6H4)3PSe 2.128 

113.577 

(113.582

41,113.55

936,113.5

8834) 

0.8642,  

-0.4583 
1.463 59.4074 49.9674 61.6314 

60.32

74 

(3-F-C6H4)3PSe 2.123 

113.804 

(113.803

19,113.79

713,113.8

1144) 

0.8622,  

-0.4423 
1.474 58.4772 49.0012 60.5886 

59.33

92 

 

 

 

Table S2. Fluorinated triaryl phosphines 

Compound 

P=E 

distance 

(Å) 

R-P=E 

angle (°) 

Mulliken 

charges 

(P, E) (e) 

Bond 

order 

ΔH 

(kcal/mol) 

ΔG 

(kcal/mol) 

ΔE 

(kcal/mol) 

ΔEZPE 

(kcal/

mol) 

(4-F-C6H4)3PS 1.972 

113.575 

(113.579

53,113.5

6953,113

.57548) 

0.7251,  

-0.3617 
1.777 71.6830 61.1857 74.6623 

72.86

70 

(3-F-C6H4)3PS 1.968 

113.763 

(113.767

77,113.7

5524,113

.76656) 

0.7251, 

 -0.3463 
1.787 70.8257 62.1060 73.6762 

71.94

37 

(2,6-F2-C6H3)3PS 1.953 

114.058 

(114.434

87,109.4

8545,118

.2532) 

0.7278, 

 -0.2993 
1.938 59.6551 49.4501 62.4175 

60.69

31 

(3,5-F2-C6H3)3PS 1.964 

113.962 

(113.957

88,113.9

6278,113

.96596) 

0.7281, 

 -0.3295 
1.809 69.7446 60.2736 72.4954 

70.82

06 
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(2,4,6-F3-C6H2)3PS 1.952 

114.104 

(114.363

12,109.8

586,118.

09081) 

0.7280,  

-0.2930 
1.951 59.6167 49.3597 62.3465 

60.63

77 

(C6F5)3PS 1.944 

114.335 

(114.539

76,110.2

295,118.

23713) 

0.7266,  

-0.2561 
1.987 58.1728 48.0048 

60.7350 

 

59.12

48 

(4-F-C6H4)3PSe 2.128 

113.577 

(113.582

41,113.5

5936,113

.58834) 

0.8642,  

-0.4583 
1.463 59.4074 49.0012 61.6314 

60.32

74 

(3-F-C6H4)3PSe 2.123 

113.804 

(113.803

19,113.7

9713,113

.81144) 

0.8622,  

-0.4423 
1.474 58.4772 49.9674 60.5886 

59.33

92 

(2,6-F2-C6H3)3PSe 2.111 

114.039 

(114.392

07,108.6

8231,119

.04381) 

0.8659,  

-0.3988 
1.602 46.7536 36.6446 48.7224 

47.51

26 

(3,5-F2-C6H3)3PSe 2.118 

114.021 

(114.016

78,113.9

8715,114

.05931) 

0.8698,  

-0.4273 
1.495 57.3009 47.8259 59.3143 

58.11

89 

(2,4,6-F3-

C6H2)3PSe 
2.109 

114.107 

(114.361

04,109.0

7528,118

.88376) 

0.8667,  

-0.3922 
1.614 46.6571 36.4801 48.5740 

47.39

11 

(C6F5)3PSe 2.100 

114.410 

(114.665

97,109.4

737,119.

09155) 

0.8663,  

-0.3522 
1.654 45.1173 35.0413 46.8468 

45.77

63 

 

 

 

Table S3. Methoxytriaryl phosphines 
 

Compound 

P=E 

distance 

(Å) 

R-P=E 

angle (°) 

Mulliken 

charges 

(P, E) (e) 

Bond 

order 

ΔH 

(kcal/mol) 

ΔG 

(kcal/mol) 

ΔE 

(kcal/mol) 

ΔEZPE 

(kcal/

mol) 

(4-MeO-C6H4)3PS 1.977 

113.518 

(113.511

42,113.5

3325,11

3.51064) 

0.7301,  

-0.3835 
1.763 73.3056 64.0256 76.2638 

74.49

86 

(3-MeO-C6H4)3PS 1.972 

113.866 

(113.858

73,113.8

6483,11

0.7292,  

-0.3658 
1.768 71.8391 62.0511 74.7920 

73.00

11 



www.manaraa.com

97 

 

3.87372) 

(2,6-MeO2-

C6H3)3PS 
1.996 

110.443 

(110.536

79,110.4

1926,11

0.3718) 

0.7710, 

 -0.4177 
1.713 62.3128 51.6858 64.9545 

63.38

88 

(2,4,6-MeO3-

C6H2)3PS 
1.998 

110.492 

(110.511

28,110.4

1019,11

0.55478) 

0.7733,  

-0.4289 
1.712 63.4724 52.3674 66.2958 

64.60

84 

(4-MeO-C6H4)3PSe 2.133 

113.470 

(113.465

81,113.4

5721,11

3.48567) 

0.8714, 

 -0.4846 
1.444 61.1216 51.8396 63.3971 

62.08

06 

(3-MeO-C6H4)3PSe 2.127 

113.894 

(113.897

34,113.8

7133,11

3.91429) 

0.8694,  

-0.4669 
1.457 59.7621 50.3611 61.7954 

60.47

51 

(2,6-MeO2-

C6H3)3PSe 
2.170 

110.129 

(110.336

28,110.0

2702,11

0.02408) 

0.9023,  

-0.5205 
1.349 50.9578 40.1768 52.7919 

51.76

28 

(2,4,6-MeO3- 

C6H2)3PSe 
2.174 

110.127 

(110.279

08,110.1

3288,10

9.97043) 

0.9060, 

 -0.5339 
1.347 52.1891 41.1191 54.1637 

53.05

11 

 

 

Table S4. Trialkyl and triperfluoroalkyl phosphines 

Compound 

P=E 

distance 

(Å) 

R-P=E 

angle 

(°) 

Mulliken 

charges 

(P, E) (e) 

Bond 

order 

ΔH 

(kcal/mol) 

ΔG 

(kcal/mol) 

ΔE 

(kcal/mol) 

ΔEZPE 

(kcal/mol) 

(H3C)3PS 1.921 

114.563 

(114.57

114,114

.55821,

114.558

22) 

0.7166,  

-0.3940 
1.870 75.1313 65.8493 78.2662 76.3403 

(H3CH2C)3PS 1.925 

114.343 

(114.32

71,114.

35514,1

14.3473

3) 

0.7001,  

-0.3973 
1.881 76.7322 67.1272 80.0124 78.0132 

(n-Bu)3PS 1.967 

114.2 

(114.1,1

14.2,11

4.3) 

0.7068,  

-0.4023 
1.921 78.41 68.38 79.88 77.71 

(n-Octyl)3PS 1.974 

114.2 

(114.2,1

14.2,11

4.2) 

0.7080, 

-0.4026 
1.915 81.57 71.60 82.86 80.99 
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(F3C)3PS 1.978 

116.808 

(116.83

294,116

.8225,1

16.7674

6) 

0.4854,  

-0.1883 
1.985 60.6333 51.4813 63.1363 61.6353 

(F3CF2C)3PS 1.978 

117.498 

(117.39

752,117

.51615,

117.580

56) 

0.5024,  

-0.1917 
1.971 59.4030 49.2180 61.6728 60.2420 

(H3C)3PSe 2.067 

114.556 

(114.57

446,114

.54726,

114.547

25) 

0.8502,  

-0.4885 
1.651 62.5888 53.4778 65.1570 63.6008 

(H3CH2C)3PSe 2.071 

114.387 

(114.34

602,114

.39597,

114.418

69) 

0.8302,  

-0.4911 
1.643 64.6183 55.1153 67.2605 65.6703 

(n-Bu)3PSe 2.121 

114.3 

(114.3,1

14.3,11

4.3) 

0.8367,  

-0.4946 
1.674 65.87 56.23 67.04 65.43 

(n-Octyl)3PSe 2.129 

114.267 

(114.2,1

14.3,11

4.3) 

0.8380,  

-0.4947 
1.668 68.99 59.10 70.07 68.60 

(F3C)3PSe 2.131 

117.079 

(117.15

299,117

.08954,

116.993

42) 

0.6053,  

-0.2821 
1.651 48.4328 39.3428 50.1785 49.1538 

(F3CF2C)3PSe 2.131 

117.810 

(117.80

418,117

.78936,

117.836

35) 

0.6178,  

-0.2856 
1.643 47.3534 37.4304 48.7443 47.8784 

 

 

Table S5. Caged phosphines 

Compound 

P=E 

distance 

(Å) 

R-P=E 

angle 

(°) 

Mulliken 

charges 

(P, E) (e) 

Bond 

order 

ΔH 

(kcal/mol) 

ΔG 

(kcal/mol) 

ΔE 

(kcal/mol) 

ΔEZPE 

(kcal/

mol) 

HC(CH2NH)3PS 1.937 

116.92

0 

(116.92

928,11

6.9186

2,116.9

1146) 

0.7351,  

-0.3469 
1.827 74.7555 65.3965 77.9806 

76.03

65 
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HC(CH2O)3PS 1.903 

116.58

3 

(116.58

82,116.

5667,1

16.594

76) 

0.7245,  

-0.2507 
1.878 68.3068 58.3918 71.6156 

69.56

48 

N(CH2NH)3PS 1.932 

117.52

2 

(117.50

618,11

7.5432

8,117.5

1679) 

0.7360,  

-0.2507 
1.868 74.8250 65.5160 78.1970 

76.19

90 

N(CH2CH2NH)3PS 1.983 

107.87

9 

(106.14

115,10

8.0416

7,109.4

529) 

0.7653,  

-0.4609 
1.654 82.5854 72.7444 86.4894 

84.10

74 

N(CH2CH2NCH3)3P

S 
1.972 

112.92

4 

(112.33

74,113.

3758,1

13.060

04) 

0.7641,  

-0.3987 
1.725 77.1321 67.3241 81.7015 

79.06

21 

HC(CH2NH)3PSe 2.088 

117.00

7 

(117.02

211,11

7.0091

7,116.9

8964) 

0.8723,  

-0.4501 
1.593 62.0797 52.8427 64.5470 

63.07

67 

HC(CH2O)3PSe 2.051 

116.68

467 

(116.69

051,11

6.6641

4,116.6

9936) 

0.8638,  

-0.3498 
1.670 54.7059 45.5389 57.2218 

55.65

99 

N(CH2NH)3PSe 2.086 

117.09

95533 

(117.10

722,11

7.1029

7,117.0

8847) 

0.8736,  

-0.4430 
1.600 61.5171 52.3761 63.9203 

62.49

21 

N(CH2CH2NH)3PSe 2.143 

107.34

43133 

(105.70

087,10

7.4612

3,108.8

7084) 

0.9054,  

-0.5711 
1.395 71.9459 60.9670 73.9151 

71.94

59 

N(CH2CH2NCH3)3P

Se 
2.133 

112.92

70633 

0.8991,  

-0.5028 
1.470 64.0119 54.1829 67.8840 

65.68

89 
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(112.60

472,11

2.8973

6,113.2

7911) 

 

Table S6. 31P and 77Se chemical shifts 
Compound 31P δ (ppm) 77Se δ (ppm) 

(PhO)3P 128.43  

(Et2N)3P 122.58  

(n-Pr)Ph2P -16.04  

(n-Bu)3P -30.02  

(n-Octyl)3P -30.07  

Ph3P -5.51  

(4-MeO-C6H4)3P -10.10  

(2,4,6-MeO3-C6H2)3P -69.97  

(4-F-C6H4)3P -9.17  

(C6F5)3P -74.32  

(PhO)3PS 53.65  

(Et2N)3PS 82.37  

(n-Pr)Ph2PS 42.89  

(n-Bu)3PS 49.39  

(n-Octyl)3PS 49.28  

Ph3PS 43.31  

(4-MeO-C6H4)3PS 41.02  

(2,4,6-MeO3-Ar)3PS 11.44  

(4-F-Ar)3PS 40.88  

(C6F5)3PS -8.277  

(PhO)3PSe 58.99 -291.70 

(Et2N)3PSe 82.21 -258.70 

(n-Pr)Ph2PSe 34.15 -342.53 

(n-Bu)3PSe 37.12 -381.70 

(n-Octyl)3PSe 36.99 -390.30 

Ph3PSe 35.27 -266.20 

(4-MeO-C6H4)3PSe 31.72 -249.91 

(2,4,6-MeO3-C6H2)3PSe -17.48 -25.50 

(4-F-C6H4)3PSe 32.34 -250.43 

 

Figure S4. 77Se NMR spectra for substituted triphenylphosphine selenides reported in this work. 

Other compounds reported previously.1 

 
1 Ruberu, T. P. A.; Albright, H. R.; Callis, B.; Ward, B.; Cisneros, J.; Fan, H.-J.; Vela, J. Molecular Control of the Nanoscale: Effect of 

Phosphine-Chalcogenide Reactivity on CdS-CdSe Nanocrystal Composition and Morphology. ACS Nano 2012, 6, 5348–5359. 
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Table S6. Phosphine cone angles and computed ΔH of bond dissociation 

Compound 
Tolman cone 

angle (°)2 

Solid cone 

angle (°)3 

DFT angle (Ni 

complex) (°)4 

ΔH (P—S) 

(kcal/mol) 

ΔH (P—Se) 

(kcal/mol) 

Me3P 118 124 125.8 75.13 62.59 

Et3P 132 143 142.6 76.73 64.62 

(n-Bu)3P 132 148 142.8 78.41 65.87 

Ph3P 145 145 177.6 71.87 59.62 

(4-MeO-Ph)3P 145 139 177.9 73.31 61.12 

(4-F-Ph)3P 145 129 178.0 75.13 62.59 

Ph2(n-Bu)P 140 140 156.5 74.01 62.07 
2 Tolman, C. A. Steric Effects of Phosphorus Ligands in Organometallic Chemistry and Homogeneous Catalysis. Chem. Rev. 

1977, 77, 313–348. 
3 Brown, T. J.; Lee, K. J. Ligand Steric Properties. Coord. Chem. Rev. 1993, 128, 89–116. 
4 Bilbrey, J. A.; Kazez, A. H.; Locklin, J.; Allen, W. D. Exact Ligand Cone Angles. J. Comput. Chem. 2013, 34, 1189–1197. 
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Figure S5. Plot of Tolman cone angle against calculated BDE for select compounds 

 
Figure S6. Plot of solid cone angle against calculated BDE for select compounds 

 
Figure S5. Plot of cone angle computed using DFT method against calculated BDE for select 

compounds 
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CHAPTER 5 

 

CONCLUSIONS AND OUTLOOK 

This thesis demonstrates some of the ways that molecular chemistry can provide new 

insight into nanocrystal synthesis. In chapter 2, the photolysis of aqueous [Co(NH3)5Cl]2+ 

produced Co(O)OH nanocrystals of reliably small size. These spherical nanocrystals could be 

transformed into Co3O4 nanocrystals of similar size and shape by heating to 206 °C, roughly 40 

°C lower than the same transformation in larger sized crystals. Chapter 3 discusses the 

correlation of computed BDE to the outcome of cadmium chalcogenide nanocrystal synthesis. 

Organodichalcogenide precursors containing weak E-E bonds and stronger C-E bonds afforded 

tetrapod shaped crystals, while precursors with strong E-E bonds and weaker C-E bonds yielded 

spherical morphology. The hypothesis in this case is that PhE monomers bind to certain 

nanocrystal facets, thus encouraging the growth of wurtzite arms only in certain crystallographic 

directions. Chapter 4 applies the same computational method to a series of organophosphine 

chalcogenide molecules to further probe their bond strengths and electronic structures. An 

interesting correlation between bond length and bond strength occurs in these molecules: Longer 

bonds are slightly stronger than shorter ones. This may be due to the increased difference in 

partial charge between the phosphorous and chalcogen atoms with increasing bond strength. 

These results may have ramifications on both selecting precursors for nanocrystal synthesis and 

chalcogen atom transfer reactions. 

As a result of these successes, a variety of new questions surrounding the physical 

chemistry of nanocrystal synthesis arise. Perhaps the most conceptually straightforward is 

whether the computational methods disclosed in this thesis apply to other systems:  Can they 

more generally understand and possibly predict the shapes or compositions of other II-VI 
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colloidal semiconductors, e.g. ZnS, ZnSe, CdTe, etc? Moreover, is the synthesis of III-V 

semiconductors such as InP or GaP understood in the same way? Recent work in the area of InP 

synthesis suggests a molecular influence in a proposed reaction mechanism.1 

Validation of the computational results with experimental data from atom transfer 

reactions would further show the generality and the predictive power of computed BDEs. The 

energetics of chalcogen atom transfer from phosphine chalcogenides onto either free phosphines2 

or carbenes3 would provide valuable data as well as demonstrate the use of new compounds in 

this reaction. This strategy may also help to identify any similarities between atom transfer 

reactions and the early stages of nanocrystal formation. Some mechanistic evidence suggests 

nucleophilic attack from a phosphine chalcogenide to the cadmium precursor to produce a Cd-Se 

bond.4 However, problems such as the formation of phosphine oxide byproducts and the 

incorporation of water into precursors5 make the proposal of a complete nanocrystal formation 

mechanism a formidable challenge.  

One further challenge that a combined experimental/computational approach could 

handle is proposing a mechanism for the photochemical synthesis of nanocrystals. Chapter 2 of 

this thesis explored select mechanistic aspects, including the involvement of O2, free radicals, 

and the probed the influence of using different wavelengths of light. Time-dependent DFT, 

employing proper functionals, could prove an invaluable tool for assigning electronic transitions 

that give rise to photochemical transformations. This approach simulates excitation energies and 

spectra for a variety of molecules,6 although it is not always accurate when assessing excitations 

that have considerable charge transfer character.7 Without a doubt, the field will continue to 

improve the accuracy of TD-DFT at this particular task.8 
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